#Phases and kinetics from (Zhang et al. 2019DATABASE C:\phreeqc\database\core10.datPHASESForsterite Mg2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mg+2 log_k 27.8626 -delta_H -205.614 kJ/mol# deltafH -520 kcal/mol -analytic -7.6195e1 -1.4013e-2 1.4763e4 2.5090e1 -3.0379e5# Range 0-350 -Vm 43.79# Extrapol supcrt92# Ref HDN+78Fayalite Fe2SiO4 + 4 H+ = SiO2 + 2 Fe+2 + 2 H2O log_k 19.1113 -delta_H -152.256 kJ/mol# deltafH -354.119 kcal/mol -analytic 1.3853e1 -3.5501e-3 7.1496e3 -6.8710e0 -6.3310e4# Range 0-350 -Vm 46.39# Extrapol supcrt92# Ref HDN+78Diopside CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 + 2 H2O + 2 SiO2 log_k 20.9643 -delta_H -133.775 kJ/mol# deltafH -765.378 kcal/mol -analytic 7.1240e1 1.5514e-2 8.1437e3 -3.0672e1 -5.6880e5# Range 0-350 -Vm 66.09# Extrapol supcrt92# Ref HDN+78Enstatite MgSiO3 + 2 H+ = H2O + Mg+2 + SiO2 log_k 11.3269 -delta_H -82.7302 kJ/mol# deltafH -369.686 kcal/mol -analytic -4.9278e1 -3.2832e-3 9.5205e3 1.4437e1 -5.4324e5# Range 0-350 -Vm 31.276# Extrapol supcrt92# Ref HDN+78Ferrosilite FeSiO3 + 2 H+ = Fe+2 + H2O + SiO2 log_k 7.4471 -delta_H -60.6011 kJ/mol# deltafH -285.658 kcal/mol -analytic 9.0041 3.7917e-3 5.1625e3 -6.3009 -3.9565e5# Range 0-350 -Vm 32.952# Extrapol supcrt92# Ref HDN+78Anorthite CaAl2(SiO4)2 + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 4 H2O log_k 26.5780 -delta_H -303.039 kJ/mol# deltafH -1007.55 kcal/mol -analytic 3.9717e-1 -1.8751e-2 1.4897e4 -6.3078 -2.3885e5# Range 0-350 -Vm 100.79# Extrapol supcrt92# Ref HDN+78Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O log_k 0.1086 -delta_H -129.415 kJ/mol# deltafH -197.72 kcal/mol -analytic -2.2015e2 -6.0290e-2 1.1812e4 8.0253e1 1.8438e2# Range 0-350 -Vm 30.274# Extrapol supcrt92# Ref HDN+78Magnetite Fe3O4 + 8 H+ = Fe+2 + 2 Fe+3 + 4 H2O log_k 10.4724 -delta_H -216.597 kJ/mol# deltafH -267.25 kcal/mol -analytic -3.0510e2 -7.9919e-2 1.8709e4 1.1178e2 2.9203e2# Range 0-350 -Vm 44.524# Extrapol supcrt92# Ref HDN+78RATES Forsterite1 rem unit should be mol,kgw-1 and second-12 rem parm(1) is surface area in the unit of m2/kgw3 rem calculation of surface area can be found in the note4 rem M is current moles of minerals. M0 is the initial moles of minerals5 rem parm(2) is a correction factor10 rem acid solution parameters11 a1=8.38E+0412 E1=6720613 n1=0.47020 rem neutral solution parameters21 a2=1.58E+0322 E2=7900030 rem base solution parameters31 a3=1.00E-07 32 E3=5663733 n2=-0.60036 rem rate=0 if no minerals and undersaturated40 SR_mineral=SR("forsterite")41 if (M<0) then goto 20042 if (M=0 and SR_mineral<1) then goto 20043 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.6750 if (SA<=0) then SA=160 R=8.3145175 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 #acid rate expression80 Rate2=a2*EXP(-E2/R/TK) #neutral rate expression85 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2 #base rate expression90 Rate=(Rate1+Rate2 + Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save moles-end Fayalite# from Palandri and Kharaka 2004# experimental condition range T=8-25C, pH=1.3-11-start1 rem unit should be mol,kgw-1 and second-12 rem parm(1) is surface area in the unit of m2/kgw3 rem calculation of surface area can be found in the note 4 rem M is current moles of minerals. M0 is the initial moles of minerals5 rem parm(2) is a correction factor10 rem acid solution parameters11 a1=5.48E+1112 E1=9440013 n1=020 rem neutral solution parameters21 a2=5.48E+0222 E2=9440030 rem base solution parameters31 a3=032 E3=033 n2=036 rem rate=0 if no minerals and undersaturated40 SR_mineral=SR("Fayalite")41 if (M<0) then goto 20042 if (M=0 and SR_mineral<1) then goto 20043 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.6750 if (SA<=0) then SA=160 R=8.3145175 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 #acid rate expression80 Rate2=a2*EXP(-E2/R/TK) #neutral rate expression85 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2 #base rate expression90 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save moles-endDiopside# from Palandri and Kharaka 2004# experimental condition range T=8-90C, pH=1-6-start1 rem unit should be mol,kgw-1 and second-12 rem parm(1) is surface area in the unit of m2/kgw3 rem calculation of surface area can be found in the note 4 rem M is current moles of minerals. M0 is the initial moles of minerals5 rem parm(2) is a correction factor10 rem acid solution parameters11 a1=3.00E+10 12 E1=9610013 n1=0.71020 rem neutral solution parameters21 a2=1.00E-04 22 E2=4060030 rem base solution parameters31 a3=032 E3=033 n2=036 rem rate=0 if no minerals and undersaturated40 SR_mineral=SR("diopside")41 if (M<0) then goto 20042 if (M=0 and SR_mineral<1) then goto 20043 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.6750 if (SA<=0) then SA=160 R=8.3145175 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 #acid rate expression80 Rate2=a2*EXP(-E2/R/TK) #neutral rate expression85 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2 #base rate expression90 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save moles-endenstatite# from Palandri and Kharaka 2004# experimental condition range T=8-72C, pH=1-12-start1 rem unit should be mol,kgw-1 and second-12 rem parm(1) is surface area in the unit of m2/kgw3 rem calculation of surface area can be found in the note 4 rem M is current moles of minerals. M0 is the initial moles of minerals5 rem parm(2) is a correction factor10 rem acid solution parameters11 a1=1.00E+05 12 E1=8000013 n1=0.60020 rem neutral solution parameters21 a2=2.00E+01 22 E2=8000030 rem base solution parameters31 a3=032 E3=033 n2=036 rem rate=0 if no minerals and undersaturated40 SR_mineral=SR("enstatite")41 if (M<0) then goto 20042 if (M=0 and SR_mineral<1) then goto 20043 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.6750 if (SA<=0) then SA=160 R=8.3145175 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 #acid rate expression80 Rate2=a2*EXP(-E2/R/TK) #neutral rate expression85 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2 #base rate expression90 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save moles-endAnorthite# from Palandri and Kharaka 2004# experimental condition range T=25-95C, pH=2-10.2-start1 rem unit should be mol,kgw-1 and second-12 rem parm(1) is surface area in the unit of m2/kgw3 rem calculation of surface area can be found in the note 4 rem M is current moles of minerals. M0 is the initial moles of minerals5 rem parm(2) is a correction factor10 rem acid solution parameters11 a1=2.58E-01 12 E1=1660113 n1=1.41120 rem neutral solution parameters21 a2=1.00E-06 22 E2=1782130 rem base solution parameters31 a3=1.00E-22 32 E3=1815033 n2=-1.76736 rem rate=0 if no minerals and undersaturated40 SR_mineral=SR("anorthite")41 if (M<0) then goto 20042 if (M=0 and SR_mineral<1) then goto 20043 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.6750 if (SA<=0) then SA=160 R=8.3145175 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 #acid rate expression80 Rate2=a2*EXP(-E2/R/TK) #neutral rate expression85 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2 #base rate expression90 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save moles-endmagnesite# from Palandri and Kharaka 2004# experimental condition range T=25C, pH=0.2-12# calcite activation energy is assumed# near equilibrium parameters p=4.0 and q=1.0-start1 rem unit should be mol,kgw-1 and second-12 rem parm(1) is surface area in the unit of m2/kgw3 rem calculation of surface area can be found in the note 4 rem M is current moles of minerals. M0 is the initial moles of minerals5 rem parm(2) is a correction factor10 rem acid solution parameters11 a1=1.39E-4 12 E1=1440013 n1=1.00020 rem neutral solution parameters21 a2=5.99E-6 22 E2=2350030 rem CO2 denpendence parameters31 a3=6.03E+05 32 E3=6280033 n2=1.00036 rem rate=0 if no minerals and undersaturated40 SR_mineral=SR("magnesite")41 if (M<0) then goto 20042 if (M=0 and SR_mineral<1) then goto 20043 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.6750 if (SA<=0) then SA=160 R=8.3145175 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 #acid rate expression80 Rate2=a2*EXP(-E2/R/TK) #neutral rate expression85 Rate3=a3*EXP(-E3/R/TK)*SR("CO2(g)")^n2 #CO2 rate expression90 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save moles-endhematite# from Palandri and Kharaka 2004# experimental condition range T=25-50C, pH=0-5-start1 rem unit should be mol,kgw-1 and second-12 rem parm(1) is surface area in the unit of m2/kgw3 rem calculation of surface area can be found in the note 4 rem M is current moles of minerals. M0 is the initial moles of minerals5 rem parm(2) is a correction factor10 rem acid solution parameters11 a1=161.6 12 E1=6620013 n1=0120 rem neutral solution parameters21 a2=9.96E-4 22 E2=6621030 rem basic dependence parameters31 a3=0 32 E3=033 n2=036 rem rate=0 if no minerals and undersaturated40 SR_mineral=SR("hematite")41 if (M<0) then goto 20042 if (M=0 and SR_mineral<1) then goto 20043 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.6750 if (SA<=0) then SA=160 R=8.3145175 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 #acid rate expression80 Rate2=a2*EXP(-E2/R/TK) #neutral rate expression85 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2 #base rate expression90 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save moles-endSOLUTION 1water 2pH 7temp 150pressure 40units mol/LNa 0.5Cl 0.5# Si 1.0# Mg 1.0# O(0) 4.0EQUILIBRIUM_PHASES 1 basalt mineralsForsterite 0 0.2Diopside 0 0.2757Anorthite 0 0.4743Hematite 0 0.025 # Assuming the half is hematite (Fe2O3)Magnetite 0 0.025 # Assuming the other half of the magmatic oxides are magnetite (Fe3O4)SAVE SOLUTION 1SAVE EQUILIBRIUM_PHASES 1 KINETICS 1Forsterite -formula Mg2SiO4 1.0 -m 2e-1 -M0 2e-1/30 # moles of solid per kg of water -parms 1e3 0.1 # total surface area per kg of water (m2/kgw) and the scaling factorDiopside -formula CaMgSi2O6 1.0 -m 2.757e-1 -M0 2.757e-1/30 # moles of solid per kg of water -parms 1e3 0.1 # total surface area per kg of water (m2/kgw) and the scaling factorAnorthite -formula CaAl2(SiO4)2 1.0 -m 4.4743e-1 -M0 4.4743e-1/30 # moles of solid per kg of water -parms 1e3 0.1 # total surface area per kg of water (m2/kgw) and the scaling factor-time 30.0-steps 30*86400 # define time steps-step_divide 1e-2-cvode trueREACTION Forsterite 0.0066Diopside 0.0099Anorthite 0.01581INCREMENTAL_REACTIONS TRUEUSE SOLUTION 1USE EQUILIBRIUM_PHASES 1USER_GRAPH 1-chart_title "Forsterite Dissolution"-axis_titles Day "mol"-initial_solutions false-start10 graph_x total_time/8640020 graph_y KIN_DELTA("Forsterite")-end USER_GRAPH 2-chart_title "Diopside Dissolution"-axis_titles Day "mol"-initial_solutions false-start10 graph_x total_time/8640020 graph_y KIN_DELTA("Diopside")-end USER_GRAPH 3-chart_title "Anorthite Dissolution"-axis_titles Day "mol"-initial_solutions false-start10 graph_x total_time/8640020 graph_y KIN_DELTA("Anorthite")-end END
[code]RATES Wollastonite-start 10 rem unit should be mol,Liter-1 and second-1 20 rem parm(1) is surface area in the unit of m2/L 30 rem calculation of surface area can be found in the note 40 rem M is current moles of minerals M0 is the initial moles of minerals 50 rem parm(2) is a scaling factor 60 rem acid solution parameters 70 k1=1.60E+04 80 E1=54651 90 n1=0.400100 rem neutral solution parameters110 k2=5120 E2=54651130 rem base solution parameters140 k3=0150 E3=0160 n2=0170 rem rate=0 if no minerals and undersaturated180 Si_mineral=SI("wollastonite")190 if (M<0) then goto 290200 if (M=0 and Si_mineral<1) then goto 290210 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67220 if (SA<=0) then SA=1230 R=8.31451240 Rate1=k1*EXP(-E1/R/TK)*ACT("H+")^n1250 Rate2=k2*EXP(-E2/R/TK)260 Rate3=k3*EXP(-E3/R/TK)*ACT("H+")^n2270 Rate=(Rate1+Rate2+Rate3)*(1-Si_mineral)*SA*parm(2)280 moles= rate*Time290 save moles-endSOLUTION 1 temp 25 pH 7 pe 4 redox pe units mol/kgw density 1 Na 0.5 C(4) 0.5 -water 1 # kgGAS_PHASE 1 -fixed_pressure -pressure 60 -volume 1 -temperature 25 CO2(g) 60PHASESWollastonite CaSiO3 + 2H+ + H2O = Ca+2 + H4SiO4 log_k 12.996 delta_h -19.498 kcal -analytical_expression 525.2449 0.2616002 -6403.288 -224.8401 -174483.8 -0.0001135532 -Vm 39.93 cm3/molCO2(g) CO2 + H2O = CO3-2 + 2H+ log_k -18.16 delta_h 0.53 kcal -T_c 304.2 -P_c 72.86 -Omega 0.225EQUILIBRIUM_PHASES 1 Wollastonite 0 CaSiO3 50KINETICS 1Wollastonite -formula CaSiO3 1 -m 0 -m0 50 -parms 0.1 0.5 -tol 1e-06-steps 172800 in 1 steps # seconds-step_divide 1-runge_kutta 2-bad_step_max 500INCREMENTAL_REACTIONS TrueREACTION_TEMPERATURE 1 90REACTION_PRESSURE 1 200END
RATES Wollastonite-start 10 rem unit should be mol,Liter-1 and second-1 20 rem parm(1) is surface area in the unit of m2/L 30 rem calculation of surface area can be found in the note 40 rem M is current moles of minerals M0 is the initial moles of minerals 50 rem parm(2) is a scaling factor 60 rem acid solution parameters 70 k1=1.60E+04 80 E1=54651 90 n1=0.400100 rem neutral solution parameters110 k2=5120 E2=54651130 rem base solution parameters140 k3=0150 E3=0160 n2=0170 rem rate=0 if no minerals and undersaturated180 Si_mineral=SI("wollastonite")190 if (M<0) then goto 290200 if (M=0 and Si_mineral<1) then goto 290210 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67220 if (SA<=0) then SA=1230 R=8.31451240 Rate1=k1*EXP(-E1/R/TK)*ACT("H+")^n1250 Rate2=k2*EXP(-E2/R/TK)260 Rate3=k3*EXP(-E3/R/TK)*ACT("H+")^n2270 Rate=(Rate1+Rate2+Rate3)*(1-Si_mineral)*SA*parm(2)280 moles= rate*Time290 save moles-endSOLUTION 1 temp 25 pH 7 pe 4 redox pe units mol/kgw density 1 Na 0.5 C(4) 0.5 -water 1 # kgGAS_PHASE 1 -fixed_pressure -pressure 60 -volume 1 -temperature 25 CO2(g) 60PHASESWollastonite CaSiO3 + 2H+ + H2O = Ca+2 + H4SiO4 log_k 12.996 delta_h -19.498 kcal -analytical_expression 525.2449 0.2616002 -6403.288 -224.8401 -174483.8 -0.0001135532 -Vm 39.93 cm3/molCO2(g) CO2 + H2O = CO3-2 + 2H+ log_k -18.16 delta_h 0.53 kcal -T_c 304.2 -P_c 72.86 -Omega 0.225EQUILIBRIUM_PHASES 1# Wollastonite 0 CaSiO3 50 Calcite 0 10KINETICS 1Wollastonite -formula CaSiO3 1 -m 50 -m0 50 -parms 0.1 0.5 -tol 1e-06-steps 172800 in 10 steps # seconds-step_divide 1-runge_kutta 2-bad_step_max 500INCREMENTAL_REACTIONS TrueREACTION_TEMPERATURE 1 90REACTION_PRESSURE 1 200USER_GRAPH 1 -headings time Delta_Wollastonite SI_Wollastonite -axis_titles "Time, seconds" "Delta Wollastonite" "SI Wollastonite" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME20 GRAPH_Y KIN_DELTA("Wollastonite")30 GRAPH_SY SI("Wollastonite") -end -active trueEND
RATES Wollastonite-start 10 rem unit should be mol,Liter-1 and second-1 20 rem parm(1) is surface area in the unit of m2/g 30 rem calculation of surface area can be found in the note 40 rem M is current moles of minerals M0 is the initial moles of minerals 50 rem parm(2) is a scaling factor 60 rem acid solution parameters 70 k1=4.266E-06 80 E1=54651 90 n1=0.400100 rem neutral solution parameters110 k2=1.32E-09120 E2=54651130 rem base solution parameters140 k3=1.32E-09150 E3=54651160 n2=0.5170 rem rate=0 if no minerals and undersaturated180 Si_mineral=SI("wollastonite")190 if (M<0) then goto 290200 if (M=0 and Si_mineral<1) then goto 290210 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67220 if (SA<=0) then SA=1230 R=8.31451240 Rate1=k1*EXP(-E1/R/TK)*ACT("H+")^n1250 Rate2=k2*EXP(-E2/R/TK)260 Rate3=k3*EXP(-E3/R/TK)*ACT("H+")^n2270 Rate=(Rate1+Rate2+Rate3)*(1-Si_mineral)*SA*parm(2)280 moles= rate*Time290 save moles-endSOLUTION 1 temp 25 pH 7 pe 4 redox pe units mol/kgw density 1 Na 0.5 C(4) 0.5 -water 1 # kgGAS_PHASE 1 -fixed_pressure -pressure 150 -volume 1 -temperature 25 CO2(g) 150PHASESWollastonite CaSiO3 + 2H+ + H2O = Ca+2 + H4SiO4 log_k 12.996 delta_h -19.498 kcal -analytical_expression 525.2449 0.2616002 -6403.288 -224.8401 -174483.8 -0.0001135532 -Vm 39.93 cm3/molCO2(g) CO2 + H2O = CO3-2 + 2H+ log_k -18.16 delta_h 0.53 kcal -T_c 304.2 -P_c 72.86 -Omega 0.225Calcite CaCO3 = Ca+2 + CO3-2 log_k -8.48 delta_h -2.297 kcal -analytical_expression -171.9065 -0.077993 2839.319 71.595 0 0 -Vm 36.9 cm3/molEQUILIBRIUM_PHASES 1 Calcite 0 10KINETICS 1Wollastonite -formula CaSiO3 1 -m 50 -m0 50 -parms 0.1 0.5 -tol 1e-08-steps 864000 in 500 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 500REACTION_TEMPERATURE 1 90INCREMENTAL_REACTIONS TrueUSER_GRAPH 1 -axis_titles "Time_seconds" "Delta Wollastonite" "SI Wollastonite" -chart_title "Time Delta_Wollastonite SI_Wollastonite" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME20 GRAPH_Y KIN_DELTA("Wollastonite")30 GRAPH_SY SI("Wollastonite")40 end -end -active trueEND
-steps 864000 in 500 steps # seconds
270 Rate=(Rate1+Rate2+Rate3)*(1-SR("Wollastonite"))*SA*parm(2)
DATABASE C:\Program Files (x86)\USGS\Phreeqc Interactive 3.7.3-15968\database\phreeqc.dat SOLUTION_SPECIES CO3-2 + 2H+ = CO2 + H2O log_k 16.681 delta_h -5.738 kcal analytical_expression 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 0 dw 1.92e-09 millero 7.29 0.92 2.07 -1.23 -1.6 0 2CO2 = (CO2)2 log_k -1.8 analytical_expression 8.68 -0.0103 -2190 0 0 0 millero 14.58 1.84 4.14 -2.46 -3.2 0 2H2O + SiO2 = H4SiO4 log_k -2.7 delta_h -209.775 kcal millero 1.9 1.7 20 -2.7 0.1291 0 H4SiO4 = H3SiO4- + H+ log_k -9.93 delta_h 8.935 kcal analytical_expression 6.368 -0.016346 -3405.9 0 0 0 H4SiO4 = H2SiO4-2 + 2H+ log_k -21.619 delta_h 29.714 kcal analytical_expression 39.478 -0.065927 -12355.1 0 0 0 RATES Forsterite start 10 rem unit should be mol,kgw-1 and second-1 20 rem parm(1) is surface area in the unit of m2/kgw 30 rem calculation of surface area can be found in the note 40 rem M is current moles of minerals M0 is the initial moles of minerals 50 rem parm(2) is a scaling factor 60 rem acid solution parameters 70 a1=8.38E+04 80 E1=67206 90 n1=0.470 100 rem neutral solution parameters 110 a2=1.58E+03 120 E2=79000 130 rem base solution parameters 140 a3=1.00E-07 150 E3=56637 160 n2=-0.600 170 rem rate=0 if no minerals and undersaturated 180 SR_mineral=SR("forsterite") 190 if (M<0) then goto 310 200 if (M=0 and SR_mineral<1) then goto 310 210 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67 220 if (SA<=0) then SA=1 230 R=8.31451 240 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 250 Rate2=a2*EXP(-E2/R/TK) 260 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2 270 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2) 280 moles= rate*Time 290 rem do not dissolve more minerals than present 300 if (moles>M) then moles=M 310 save moles end Magnesite start 10 rem unit should be mol,kgw-1 and second-1 20 rem parm(1) is surface area in the unit of m2/kgw 30 rem calculation of surface area can be found in the note 40 rem M is current moles of minerals M0 is the initial moles of minerals 50 rem parm(2) is a scaling factor 60 rem acid solution parameters 70 a1=1.39E-4 80 E1=14400 90 n1=1.000 100 rem neutral solution parameters 110 a2=5.99E-6 120 E2=23500 130 rem CO2 denpendence parameters 140 a3=6.03E+05 150 E3=62800 160 n2=1.000 170 rem rate=0 if no minerals and undersaturated 180 SR_mineral=SR("magnesite") 190 if (M<0) then goto 310 200 if (M=0 and SR_mineral<1) then goto 310 210 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67 220 if (SA<=0) then SA=1 230 R=8.31451 240 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 250 Rate2=a2*EXP(-E2/R/TK) 260 Rate3=a3*EXP(-E3/R/TK)*SR("CO2(g)")^n2 270 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral^4)*SA*parm(2) 280 moles= rate*Time 290 rem do not dissolve more minerals than present 300 if (moles>M) then moles=M 310 save moles end PHASES CO2(g) CO2 = CO2 log_k -1.468 delta_h -4.776 kcal analytical_expression 10.5624 -0.023547 -3972.8 0 587460 1.9194e-05 t_c 304.2 p_c 72.86 omega 0.225 Forsterite Mg2SiO4 + 4H+ = 2H2O + 2Mg+2 + SiO2 log_k 27.8626 delta_h -520 kcal analytical_expression -76.195 -0.014013 14763 25.09 -303790 0 vm 32.952 cm3/mol Magnesite MgCO3 + H+ = HCO3- + Mg+2 log_k 2.2936 delta_h -265.63 kJ analytical_expression -166.65 -0.049469 6434.4 65.506 100.45 0 vm 28.018 cm3/mol SOLUTION 1 temp 35 pH 7 pe 4 redox pe units mol/kgw density 1 water 1 # kg GAS_PHASE 1 fixed_pressure pressure 100 volume 1 temperature 35 CO2(g) 100 KINETICS 1 Forsterite formula Mg2SiO4 1 m 1 m0 1 parms 6.639 1 tol 1e-08 Magnesite formula MgCO3 1 m 0 m0 0 parms 1 0.5 tol 1e-08 steps 2592000 in 500 steps # seconds step_divide 1 runge_kutta 3 bad_step_max 500 INCREMENTAL_REACTIONS True KNOBS iterations 3000 convergence_tolerance 1e-10 tolerance 1e-15 step_size 1000 pe_step_size 10 USER_GRAPH 1 -axis_titles "Time_Hours" "Delta_Forsterite" "" -chart_title "Delta Forsterite" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start 10 GRAPH_X TOTAL_TIME/3600 20 GRAPH_Y KIN_Delta("Forsterite") -end -active true USER_GRAPH 2 -axis_titles "Time_Hours" "Mg Concentration (mol/kgw)" "" -chart_title "Magnesium leaching" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start 10 GRAPH_X TOTAL_TIME/3600 20 GRAPH_Y TOT("Mg") -end -active true USER_GRAPH 3 -axis_titles "Time_Hours" "Moles" "" -chart_title "Forsterite moles" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start 10 GRAPH_X TOTAL_TIME/3600 20 GRAPH_Y KIN("Forsterite") -end -active true SELECTED_OUTPUT 1 file C:\Users\hp\Desktop\Phreeqc\Brucite\selected_output_P(35-100).sel reset false USER_PUNCH 1 headings Time pH Mg_conc. SI_Magnesite Delta_brucite Brucite_mol Magnesite_mol start 10 PUNCH TOTAL_TIME/3600 20 PUNCH -LA("H+") 30 PUNCH TOT("Mg") 40 PUNCH SI("Magnesite") 50 PUNCH KIN_DELTA("Forsterite") 60 PUNCH KIN("Forsterite") 70 PUNCH KIN("Magnesite") end ENDERROR: Elements in species have not been tabulated, SiO2.ERROR: Reaction for species has not been defined, SiO2.ERROR: Calculations terminating due to input errors
SiO2 + 2H2O = H4SiO4, log K 0.0
#DATABASE C:\Program Files (x86)\USGS\Phreeqc Interactive 3.7.3-15968\database\phreeqc.datRATES Forsterite-start 10 rem unit should be mol,kgw-1 and second-1 20 rem parm(1) is surface area in the unit of m2/kgw 30 rem calculation of surface area can be found in the note 40 rem M is current moles of minerals M0 is the initial moles of minerals 50 rem parm(2) is a scaling factor 60 rem acid solution parameters 70 a1=8.38E+04 80 E1=67206 90 n1=0.470100 rem neutral solution parameters110 a2=1.58E+03120 E2=79000130 rem base solution parameters140 a3=1.00E-07150 E3=56637160 n2=-0.600170 rem rate=0 if no minerals and undersaturated180 SR_mineral=SR("forsterite")190 if (M<0) then goto 310200 if (M=0 and SR_mineral<1) then goto 310210 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67220 if (SA<=0) then SA=1230 R=8.31451240 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1250 Rate2=a2*EXP(-E2/R/TK)260 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2270 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)280 moles= rate*Time290 rem do not dissolve more minerals than present300 if (moles>M) then moles=M310 save moles-end Magnesite-start 10 rem unit should be mol,kgw-1 and second-1 20 rem parm(1) is surface area in the unit of m2/kgw 30 rem calculation of surface area can be found in the note 40 rem M is current moles of minerals M0 is the initial moles of minerals 50 rem parm(2) is a scaling factor 60 rem acid solution parameters 70 a1=1.39E-4 80 E1=14400 90 n1=1.000100 rem neutral solution parameters110 a2=5.99E-6120 E2=23500130 rem CO2 denpendence parameters140 a3=6.03E+05150 E3=62800160 n2=1.000170 rem rate=0 if no minerals and undersaturated180 SR_mineral=SR("magnesite")190 if (M<0) then goto 310200 if (M=0 and SR_mineral<1) then goto 310210 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67220 if (SA<=0) then SA=1230 R=8.31451240 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1250 Rate2=a2*EXP(-E2/R/TK)260 Rate3=a3*EXP(-E3/R/TK)*SR("CO2(g)")^n2270 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral^4)*SA*parm(2)280 moles= rate*Time290 rem do not dissolve more minerals than present300 if (moles>M) then moles=M310 save moles-endPHASESForsterite Mg2SiO4 + 4H+ = H4SiO4 + 2Mg+2 log_k 27.8626 delta_h -520 kcal -analytical_expression -76.195 -0.014013 14763 25.09 -303790 0 -Vm 32.952 cm3/molMagnesite MgCO3 + H+ = HCO3- + Mg+2 log_k 2.2936 delta_h -265.63 kJ -analytical_expression -166.65 -0.049469 6434.4 65.506 100.45 0 -Vm 28.018 cm3/molENDSOLUTION 1 temp 35 pH 7 pe 4 redox pe units mol/kgw density 1 -water 1 # kgGAS_PHASE 1 -fixed_pressure -pressure 100 -volume 1 -temperature 35 CO2(g) 100KINETICS 1Forsterite -formula Mg2SiO4 1 -m 1 -m0 1 -parms 6.639 1 -tol 1e-08Magnesite -formula MgCO3 1 -m 0 -m0 0 -parms 1 0.5 -tol 1e-08-steps 2592000 in 500 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 500 INCREMENTAL_REACTIONS TrueUSER_GRAPH 1 -axis_titles "Time_Hours" "Delta_Forsterite" "" -chart_title "Delta Forsterite" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME/360020 GRAPH_Y KIN_Delta("Forsterite") -end -active trueUSER_GRAPH 2 -axis_titles "Time_Hours" "Mg Concentration (mol/kgw)" "" -chart_title "Magnesium leaching" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME/360020 GRAPH_Y TOT("Mg") -end -active trueUSER_GRAPH 3 -axis_titles "Time_Hours" "Moles" "" -chart_title "Forsterite moles" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME/360020 GRAPH_Y KIN("Forsterite") -end -active true END
SOLUTION_SPECIESCO3-2 + 2H+ = CO2 + H2O log_k 16.681 delta_h -5.738 kcal -analytical_expression 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 0 -dw 1.92e-09 -millero 7.29 0.92 2.07 -1.23 -1.6 02CO2 = (CO2)2 log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 0 0 0 -millero 14.58 1.84 4.14 -2.46 -3.2 0SiO2 = SiO2 log_k 0RATES Forsterite-start 10 rem unit should be mol,kgw-1 and second-1 20 rem parm(1) is surface area in the unit of m2/kgw 30 rem calculation of surface area can be found in the note 40 rem M is current moles of minerals M0 is the initial moles of minerals 50 rem parm(2) is a scaling factor 60 rem acid solution parameters 70 a1=8.38E+04 80 E1=67206 90 n1=0.470100 rem neutral solution parameters110 a2=1.58E+03120 E2=79000130 rem base solution parameters140 a3=1.00E-07150 E3=56637160 n2=-0.600170 rem rate=0 if no minerals and undersaturated180 SR_mineral=SR("forsterite")190 if (M<0) then goto 310200 if (M=0 and SR_mineral<1) then goto 310210 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67220 if (SA<=0) then SA=1230 R=8.31451240 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1250 Rate2=a2*EXP(-E2/R/TK)260 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2270 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)280 moles= rate*Time290 rem do not dissolve more minerals than present300 if (moles>M) then moles=M310 save moles-end Magnesite-start 10 rem unit should be mol,kgw-1 and second-1 20 rem parm(1) is surface area in the unit of m2/kgw 30 rem calculation of surface area can be found in the note 40 rem M is current moles of minerals M0 is the initial moles of minerals 50 rem parm(2) is a scaling factor 60 rem acid solution parameters 70 a1=1.39E-4 80 E1=14400 90 n1=1.000100 rem neutral solution parameters110 a2=5.99E-6120 E2=23500130 rem CO2 denpendence parameters140 a3=6.03E+05150 E3=62800160 n2=1.000170 rem rate=0 if no minerals and undersaturated180 SR_mineral=SR("magnesite")190 if (M<0) then goto 310200 if (M=0 and SR_mineral<1) then goto 310210 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67220 if (SA<=0) then SA=1230 R=8.31451240 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1250 Rate2=a2*EXP(-E2/R/TK)260 Rate3=a3*EXP(-E3/R/TK)*SR("CO2(g)")^n2270 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral^4)*SA*parm(2)280 moles= rate*Time290 rem do not dissolve more minerals than present300 if (moles>M) then moles=M310 save moles-endPHASESCO2(g) CO2 = CO2 log_k -1.468 delta_h -4.776 kcal -analytical_expression 10.5624 -0.023547 -3972.8 0 587460 1.9194e-05 -T_c 304.2 -P_c 72.86 -Omega 0.225Forsterite Mg2SiO4 + 4H+ = 2H2O + 2Mg+2 + SiO2 log_k 27.8626 delta_h -520 kcal -analytical_expression -76.195 -0.014013 14763 25.09 -303790 0 -Vm 32.952 cm3/molMagnesite MgCO3 + H+ = HCO3- + Mg+2 log_k 2.2936 delta_h -265.63 kJ -analytical_expression -166.65 -0.049469 6434.4 65.506 100.45 0 -Vm 28.018 cm3/molSOLUTION 1 temp 35 pH 7 pe 4 redox pe units mol/kgw density 1 -water 1 # kgGAS_PHASE 1 -fixed_pressure -pressure 100 -volume 1 -temperature 35 CO2(g) 100;KINETICS 1Forsterite -formula Mg2SiO4 1 -m 1 -m0 1 -parms 6.639 1 -tol 1e-08Magnesite -formula MgCO3 1 -m 0 -m0 0 -parms 1 0.5 -tol 1e-08-steps 2592000 in 500 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 500-cvode true -cvode_steps 100-cvode_order 5INCREMENTAL_REACTIONS TrueKNOBS -iterations 3000 -convergence_tolerance 1e-10 -tolerance 1e-15 -step_size 1000 -pe_step_size 10USER_GRAPH 1 -axis_titles "Time_Hours" "Delta_Forsterite" "" -chart_title "Delta Forsterite" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME/360020 GRAPH_Y KIN_Delta("Forsterite") -end -active trueUSER_GRAPH 2 -axis_titles "Time_Hours" "Mg Concentration (mol/kgw)" "" -chart_title "Magnesium leaching" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME/360020 GRAPH_Y TOT("Mg") -end -active trueUSER_GRAPH 3 -axis_titles "Time_Hours" "Moles" "" -chart_title "Forsterite moles" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME/360020 GRAPH_Y KIN("Forsterite") -end -active trueSELECTED_OUTPUT 1 -file C:\Users\hp\Desktop\Phreeqc\Brucite\selected_output_P(35-100).sel -reset falseUSER_PUNCH 1 -headings Time pH Mg_conc. SI_Magnesite Delta_brucite Brucite_mol Magnesite_mol -start10 PUNCH TOTAL_TIME/360020 PUNCH -LA("H+")30 PUNCH TOT("Mg")40 PUNCH SI("Magnesite")50 PUNCH KIN_DELTA("Forsterite")60 PUNCH KIN("Forsterite")70 PUNCH KIN("Magnesite") -endEND
Database file: C:\Program Files (x86)\USGS\Phreeqc Interactive 3.7.3-15968\database\phreeqc.dat------------------Reading data base.------------------ SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES RATES END------------------------------------Reading input data for simulation 1.------------------------------------ DATABASE C:\Program Files (x86)\USGS\Phreeqc Interactive 3.7.3-15968\database\phreeqc.dat SOLUTION_SPECIES CO3-2 + 2H+ = CO2 + H2O log_k 16.681 delta_h -5.738 kcal analytical_expression 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 0 dw 1.92e-09 millero 7.29 0.92 2.07 -1.23 -1.6 0 2CO2 = (CO2)2 log_k -1.8 analytical_expression 8.68 -0.0103 -2190 0 0 0 millero 14.58 1.84 4.14 -2.46 -3.2 0 SiO2 = SiO2 log_k 0 RATES Forsterite start 10 rem unit should be mol,kgw-1 and second-1 20 rem parm(1) is surface area in the unit of m2/kgw 30 rem calculation of surface area can be found in the note 40 rem M is current moles of minerals M0 is the initial moles of minerals 50 rem parm(2) is a scaling factor 60 rem acid solution parameters 70 a1=8.38E+04 80 E1=67206 90 n1=0.470 100 rem neutral solution parameters 110 a2=1.58E+03 120 E2=79000 130 rem base solution parameters 140 a3=1.00E-07 150 E3=56637 160 n2=-0.600 170 rem rate=0 if no minerals and undersaturated 180 SR_mineral=SR("forsterite") 190 if (M<0) then goto 310 200 if (M=0 and SR_mineral<1) then goto 310 210 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67 220 if (SA<=0) then SA=1 230 R=8.31451 240 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 250 Rate2=a2*EXP(-E2/R/TK) 260 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2 270 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2) 280 moles= rate*Time 290 rem do not dissolve more minerals than present 300 if (moles>M) then moles=M 310 save moles end Magnesite start 10 rem unit should be mol,kgw-1 and second-1 20 rem parm(1) is surface area in the unit of m2/kgw 30 rem calculation of surface area can be found in the note 40 rem M is current moles of minerals M0 is the initial moles of minerals 50 rem parm(2) is a scaling factor 60 rem acid solution parameters 70 a1=1.39E-4 80 E1=14400 90 n1=1.000 100 rem neutral solution parameters 110 a2=5.99E-6 120 E2=23500 130 rem CO2 denpendence parameters 140 a3=6.03E+05 150 E3=62800 160 n2=1.000 170 rem rate=0 if no minerals and undersaturated 180 SR_mineral=SR("magnesite") 190 if (M<0) then goto 310 200 if (M=0 and SR_mineral<1) then goto 310 210 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67 220 if (SA<=0) then SA=1 230 R=8.31451 240 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 250 Rate2=a2*EXP(-E2/R/TK) 260 Rate3=a3*EXP(-E3/R/TK)*SR("CO2(g)")^n2 270 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral^4)*SA*parm(2) 280 moles= rate*Time 290 rem do not dissolve more minerals than present 300 if (moles>M) then moles=M 310 save moles end PHASES CO2(g) CO2 = CO2 log_k -1.468 delta_h -4.776 kcal analytical_expression 10.5624 -0.023547 -3972.8 0 587460 1.9194e-05 t_c 304.2 p_c 72.86 omega 0.225 Forsterite Mg2SiO4 + 4H+ = 2H2O + 2Mg+2 + SiO2 log_k 27.8626 delta_h -520 kcal analytical_expression -76.195 -0.014013 14763 25.09 -303790 0 vm 32.952 cm3/mol Magnesite MgCO3 + H+ = HCO3- + Mg+2 log_k 2.2936 delta_h -265.63 kJ analytical_expression -166.65 -0.049469 6434.4 65.506 100.45 0 vm 28.018 cm3/mol SOLUTION 1 temp 35 pH 7 pe 4 redox pe units mol/kgw density 1 water 1 # kg GAS_PHASE 1 fixed_pressure pressure 100 volume 1 temperature 35 CO2(g) 100 KINETICS 1 Forsterite formula Mg2SiO4 1 m 1 m0 1 parms 6.639 1 tol 1e-08 Magnesite formula MgCO3 1 m 0 m0 0 parms 1 0.5 tol 1e-08 steps 2592000 in 500 steps # seconds step_divide 1 runge_kutta 3 bad_step_max 500 cvode true cvode_steps 100 cvode_order 5 INCREMENTAL_REACTIONS True KNOBS iterations 3000 convergence_tolerance 1e-10 tolerance 1e-15 step_size 1000 pe_step_size 10 USER_GRAPH 1 -axis_titles "Time_Hours" "Delta_Forsterite" "" -chart_title "Delta Forsterite" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start 10 GRAPH_X TOTAL_TIME/3600 20 GRAPH_Y KIN_Delta("Forsterite") -end -active true USER_GRAPH 2 -axis_titles "Time_Hours" "Mg Concentration (mol/kgw)" "" -chart_title "Magnesium leaching" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start 10 GRAPH_X TOTAL_TIME/3600 20 GRAPH_Y TOT("Mg") -end -active true USER_GRAPH 3 -axis_titles "Time_Hours" "Moles" "" -chart_title "Forsterite moles" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start 10 GRAPH_X TOTAL_TIME/3600 20 GRAPH_Y KIN("Forsterite") -end -active true SELECTED_OUTPUT 1 file C:\Users\hp\Desktop\Phreeqc\Brucite\selected_output_P(35-100).sel reset false USER_PUNCH 1 headings Time pH Mg_conc. SI_Magnesite Delta_brucite Brucite_mol Magnesite_mol start 10 PUNCH TOTAL_TIME/3600 20 PUNCH -LA("H+") 30 PUNCH TOT("Mg") 40 PUNCH SI("Magnesite") 50 PUNCH KIN_DELTA("Forsterite") 60 PUNCH KIN("Forsterite") 70 PUNCH KIN("Magnesite") end ENDERROR: Could not reduce equation to secondary master species, SiO2.ERROR: Non-master species in secondary reaction, SiO2.ERROR: Could not reduce equation to secondary master species, Forsterite.ERROR: Calculations terminating due to input errors.-------------------------------End of Run after 0.047 Seconds.
SOLUTION_SPECIESCO3-2 + 2H+ = CO2 + H2O log_k 16.681 delta_h -5.738 kcal -analytical_expression 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 0 -dw 1.92e-09 -millero 7.29 0.92 2.07 -1.23 -1.6 02CO2 = (CO2)2 log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 0 0 0 -millero 14.58 1.84 4.14 -2.46 -3.2 0#SiO2 = SiO2# log_k 0RATES Forsterite-start 10 rem unit should be mol,kgw-1 and second-1 20 rem parm(1) is surface area in the unit of m2/kgw 30 rem calculation of surface area can be found in the note 40 rem M is current moles of minerals M0 is the initial moles of minerals 50 rem parm(2) is a scaling factor 60 rem acid solution parameters 70 a1=8.38E+04 80 E1=67206 90 n1=0.470100 rem neutral solution parameters110 a2=1.58E+03120 E2=79000130 rem base solution parameters140 a3=1.00E-07150 E3=56637160 n2=-0.600170 rem rate=0 if no minerals and undersaturated180 SR_mineral=SR("forsterite")190 if (M<0) then goto 310200 if (M=0 and SR_mineral<1) then goto 310210 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67220 if (SA<=0) then SA=1230 R=8.31451240 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1250 Rate2=a2*EXP(-E2/R/TK)260 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2270 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)280 moles= rate*Time290 rem do not dissolve more minerals than present300 if (moles>M) then moles=M310 save moles-end Magnesite-start 10 rem unit should be mol,kgw-1 and second-1 20 rem parm(1) is surface area in the unit of m2/kgw 30 rem calculation of surface area can be found in the note 40 rem M is current moles of minerals M0 is the initial moles of minerals 50 rem parm(2) is a scaling factor 60 rem acid solution parameters 70 a1=1.39E-4 80 E1=14400 90 n1=1.000100 rem neutral solution parameters110 a2=5.99E-6120 E2=23500130 rem CO2 denpendence parameters140 a3=6.03E+05150 E3=62800160 n2=1.000170 rem rate=0 if no minerals and undersaturated180 SR_mineral=SR("magnesite")190 if (M<0) then goto 310200 if (M=0 and SR_mineral<1) then goto 310210 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67220 if (SA<=0) then SA=1230 R=8.31451240 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1250 Rate2=a2*EXP(-E2/R/TK)260 Rate3=a3*EXP(-E3/R/TK)*SR("CO2(g)")^n2270 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral^4)*SA*parm(2)280 moles= rate*Time290 rem do not dissolve more minerals than present300 if (moles>M) then moles=M310 save moles-endPHASESCO2(g) CO2 = CO2 log_k -1.468 delta_h -4.776 kcal -analytical_expression 10.5624 -0.023547 -3972.8 0 587460 1.9194e-05 -T_c 304.2 -P_c 72.86 -Omega 0.225Forsterite #Mg2SiO4 + 4H+ = 2H2O + 2Mg+2 + SiO2 # SiO2 + 2H2O = H4SiO4, log_k 0 Mg2SiO4 + 4H+ = 2Mg+2 + H4SiO4 log_k 27.8626 delta_h -520 kcal -analytical_expression -76.195 -0.014013 14763 25.09 -303790 0 -Vm 32.952 cm3/molMagnesite MgCO3 + H+ = HCO3- + Mg+2 log_k 2.2936 delta_h -265.63 kJ -analytical_expression -166.65 -0.049469 6434.4 65.506 100.45 0 -Vm 28.018 cm3/molSOLUTION 1 temp 35 pH 7 pe 4 redox pe units mol/kgw density 1 -water 1 # kgGAS_PHASE 1 -fixed_pressure -pressure 100 -volume 1 -temperature 35 CO2(g) 100;KINETICS 1Forsterite -formula Mg2SiO4 1 -m 1 -m0 1 -parms 6.639 1 -tol 1e-08Magnesite -formula MgCO3 1 -m 0 -m0 0 -parms 1 0.5 -tol 1e-08-steps 2592000 in 500 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 500-cvode true-cvode_steps 100-cvode_order 5INCREMENTAL_REACTIONS TrueKNOBS -iterations 3000 -convergence_tolerance 1e-10 -tolerance 1e-15 -step_size 1000 -pe_step_size 10USER_GRAPH 1 -axis_titles "Time_Hours" "Delta_Forsterite" "" -chart_title "Delta Forsterite" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME/360020 GRAPH_Y KIN_Delta("Forsterite") -end -active trueUSER_GRAPH 2 -axis_titles "Time_Hours" "Mg Concentration (mol/kgw)" "" -chart_title "Magnesium leaching" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME/360020 GRAPH_Y TOT("Mg") -end -active trueUSER_GRAPH 3 -axis_titles "Time_Hours" "Moles" "" -chart_title "Forsterite moles" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME/360020 GRAPH_Y KIN("Forsterite") -end -active trueEND