#sea level rise scenarioSOLUTION_SPECIES #dummy species to help with redox stability H2O + 0.01e- = H2O-0.01 -log_k -9 SOLUTION 1-30 #Oxidised fresher pore water (1/10 seawater) units ppm pH 7.22 pe 8.451 density 1.023 temp 25.0 Ca 41.23 Mg 129.18 Na 1076.80 K 39.91 Fe 0.002 Mn 0.0002 Cl 1935.30 charge Alkalinity 141.682 as HCO3 S(6) 271.20 N(5) 0.32 gfw 62.0 #nitrate O(0) 1.0 O2(g) -0.7EQUILIBRIUM_PHASES 1-30 #solid phases Calcite; CO2(g) -3.4 #Equilibrium with atmospheric CO2 Goethite 0 2.5e-3 #Fe oxide FeS(ppt) 0 0 #Fe sulfide Pyrolusite 0 4e-5 #Mn oxideKINETICS 1-30 # Organic matter degradation, the RATE expression for Organic_C is in Phreeqc.datOrganic_C-formula C-tol 1e-8-m 5e-3 # SOC in mol#-time 30 year in 30 #Turned off as time is specified in TRANSPORT block??INCREMENTAL_REACTIONS trueSAVE solution 1-30PRINT; -status trueEND SOLUTION 0 #seawater composition entering the soil column units ppm pH 8.22 pe 8.451 density 1.023 temp 25.0 Ca 412.3 Mg 1291.8 Na 10768.0 K 399.1 Fe 0.002 Mn 0.0002 Cl 19353.0 charge Alkalinity 141.682 as HCO3 S(6) 2712.0 N(-3) 0.32 as NH4TRANSPORT # 30 yr flow, 3 cm/yr, 90cm -cells 30; -length 0.03 -time_step 3.15e7 -flow_direction forward; -shifts 30 -dispersivity 0.1; -punch_frequency 30SELECTED_OUTPUT -file Column_model_1.csv -reset false -solution -distance true -totals Cl Ca S(6) C Fe(2) S(-2) -equilibrium_phases goethite FeS(ppt) pyrolusiteUSER_GRAPH 1 -heading dist Fe(2) S(-2) S(6) FeS -init false # -init is shorthand for initial_solutions -plot_concentration_vs x -axis_titles "Distance / m" "mmol/L" "FeS, moles" -start 10 graph_x dist 20 graph_y tot("Fe(2)"), tot("S(-2)"), tot("S(6)") 30 graph_sy equi("FeS(ppt)") -endUSER_GRAPH 2 -headings time Fe(2) S(-2) S(6) FeS -axis_titles "Time / years" "mmoL" -start 10 graph_x total_time/3.1536e7 #converting seconds to years 20 graph_y tot("Fe(2)"), tot("S(-2)"), tot("S(6)") 30 graph_sy equi("FeS(ppt)") -endUSER_GRAPH 3 -headings time Organic_C -axis_titles "Time / years" "Organic C/ mmoL" -start 10 graph_x total_time/3.1536e7 #converting seconds to years 20 graph_y KIN("Organic_C") -endEND
#sea level rise scenarioSOLUTION_SPECIES #dummy species to help with redox stability H2O + 0.01e- = H2O-0.01 -log_k -9RATES###########Organic_C############ Example of KINETICS data block for SOC (sediment organic carbon):# KINETICS 1# Organic_C# -formula C# -tol 1e-8# -m 5e-3 # SOC in mol# -time 30 year in 15Organic_C -start1 REM Additive Monod kinetics for SOC (sediment organic carbon)2 REM Electron acceptors: O2, NO3, and SO410 if (M <= 0) THEN GOTO 20020 mO2 = MOL("O2")30 mNO3 = TOT("N(5)")40 mSO4 = TOT("S(6)")50 k_O2 = 1.57e-9 # 1/sec60 k_NO3 = 1.67e-11 # 1/sec70 k_SO4 = 1.e-13 # 1/sec80 rate = k_O2 * mO2/(2.94e-4 + mO2)90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3)100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4)110 moles = rate * M * (M/M0) * TIME200 SAVE moles -endENDSOLUTION 1-30 #Oxidised fresher pore water (1/10 seawater) units ppm pH 7.22 pe 8.451 density 1.023 temp 25.0 Ca 41.23 Mg 129.18 Na 1076.80 K 39.91 Fe 0.002 Mn 0.0002 Cl 1935.30 charge Alkalinity 141.682 as HCO3 S(6) 271.20 N(5) 0.32 gfw 62.0 #nitrate O(0) 1.0 O2(g) -0.7EQUILIBRIUM_PHASES 1-30 #solid phases Calcite 0 10 CO2(g) -3.4 #Equilibrium with atmospheric CO2 Goethite 0 2.5e-3 #Fe oxide FeS(ppt) 0 0 #Fe sulfide Pyrolusite 0 4e-5 #Mn oxideSAVE solution 1-30ENDKINETICS 1-30 # Organic matter degradation, the RATE expression for Organic_C is in Phreeqc.datOrganic_C-formula C-tol 1e-8-m 5e-3 # SOC in molEND SOLUTION 0 #seawater composition entering the soil column units ppm pH 8.22 pe 8.451 density 1.023 temp 25.0 Ca 412.3 Mg 1291.8 Na 10768.0 K 399.1 Fe 0.002 Mn 0.0002 Cl 19353.0 charge Alkalinity 141.682 as HCO3 S(6) 2712.0 N(-3) 0.32 as NH4ENDTRANSPORT # 30 yr flow, 3 cm/yr, 90cm-cells 30; -length 0.03-time_step 3.15e7#-flow_direction forward #-bc flux flux-dispersivity 0.1;-shifts 8-punch_frequency 8-punch_cells 1-30-flow diffusion_only-bc constant closedUSER_GRAPH 1 -heading dist O(0) N(5) Mn Fe -init false # -init is shorthand for initial_solutions -plot_concentration_vs x -axis_titles "Distance, m" "log10 mol/kgw" "" -start 10 graph_x dist 20 graph_y LOG10[tot("O(0)")], LOG10[tot("N(5)")], LOG10[TOT("Mn")], LOG10[TOT("Fe")] -endUSER_GRAPH 2 -heading dist Pyrolusite Goethite FeS(ppt) Organic_C -init false # -init is shorthand for initial_solutions -plot_concentration_vs x -axis_titles "Distance, m" "moles" "Organic_C, moles" -start 10 graph_x dist 20 graph_y equi("Pyrolusite"), equi("Goethite"), equi("FeS(ppt)") 30 graph_sy KIN("Organic_C") -endUSER_GRAPH 3 -heading dist Delta_Pyrolusite Delta_Goethite Delta_FeS(ppt) Delta_organic_C -init false # -init is shorthand for initial_solutions -plot_concentration_vs x -axis_titles "Distance, m" "moles" "Delta Organic_C, moles" -start 10 graph_x dist 20 graph_y equi_delta("Pyrolusite"), equi_delta("Goethite"), equi_delta("FeS(ppt)") 30 graph_sy KIN_DELTA("Organic_C") -endEND
#sea level rise scenarioSOLUTION_SPECIES #dummy species to help with redox stability H2O + 0.01e- = H2O-0.01 -log_k -9RATESOrganic_C -start1 REM Additive Monod kinetics for SOC (sediment organic carbon)2 REM Electron acceptors: O2, NO3, and SO410 if (M <= 0) THEN GOTO 20020 mO2 = MOL("O2")30 mNO3 = TOT("N(5)")40 mSO4 = TOT("S(6)")50 k_O2 = 1.57e-9 # 1/sec 60 k_NO3 = 1.67e-11 # 1/sec 70 k_SO4 = 1.e-13 # 1/sec 80 rate = k_O2 * mO2/(2.94e-4 + mO2)90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3)100 rate = rate + k_SO4 * mSO4/(1e-4 + mSO4)110 moles = rate * M * (M/M0) * TIME200 SAVE moles -endENDSOLUTION 1-30 #Oxidised fresher pore water (1/10 seawater) units ppm pH 7.22 temp 25.0 Ca 41.23 Mg 129.18 Na 1076.80 K 39.91 Cl 1935.30 charge Alkalinity 141.682 as HCO3 S(6) 271.20 N(5) 0.02 gfw 62.0 #nitrate O(0) 1.0 O2(g) -0.7EQUILIBRIUM_PHASES 1-30 #solid phases# Calcite 0 10 CO2(g) -3.4 #Equilibrium with atmospheric CO2 Goethite 0 2.5e-3 #Fe oxide FeS(ppt) 0 0 #Fe sulfide Pyrolusite 0 4e-5 #Mn oxideSAVE solution 1-30ENDKINETICS 1-30 # Organic matter degradation, the RATE expression for Organic_C is in Phreeqc.datOrganic_C-formula C-tol 1e-8-m 5e-3 # Starting SOC in molEND SOLUTION 0 #seawater composition entering the soil column units ppm pH 8.22 temp 25.0 Ca 412.3 Mg 1291.8 Na 10768.0 K 399.1 Cl 19353.0 charge Alkalinity 141.682 as HCO3 S(6) 2712.0ENDTRANSPORT # 30 yr flow, 3 cm/yr, 90cm-cells 30; -length 0.03-time_step 3.15e7#-flow_direction forward#-bc flux flux-dispersivity 0.1;-shifts 8-punch_frequency 8-punch_cells 1-30-flow diffusion_only-bc constant closedUSER_GRAPH 1 -heading dist Na Cl SO4 NO3 O2 -init false # -init is shorthand for initial_solutions -plot_concentration_vs x -axis_titles "Distance, m" "log10 mol/kgw" "O2" -start 10 graph_x dist 20 graph_y LOG10[tot("Na")], LOG10[tot("Cl")], LOG10[tot("S(6)")], LOG10[tot("N(5)")], 30 graph_sy tot("O(0)")/2 -endUSER_GRAPH 2 -heading dist Fe(2) S(-2) S(6) FeS -init false # -init is shorthand for initial_solutions -plot_concentration_vs x -axis_titles "Distance / m" "mmol/L" "FeS, moles" -start 10 graph_x dist 20 graph_y tot("Fe(2)"), tot("S(-2)"), tot("S(6)") -endUSER_GRAPH 3 -heading dist Pyrolusite Goethite FeS(ppt) Organic_C -init false # -init is shorthand for initial_solutions -plot_concentration_vs x -axis_titles "Distance, m" "log10 moles" "Organic_C, moles" -start 10 graph_x dist 20 graph_y LOG10[equi("Pyrolusite")], LOG10[equi("Goethite")], LOG10[equi("FeS(ppt)")] 30 graph_sy KIN("Organic_C") -endEND
1e-13*5e-3*3.15e7 = 1.58e-8 mol/y in a 1 L vol