DATABASE c:\phreeqc\database\llnl.datSOLUTION 0 #solution injected into the 1st cell temp 40pH 3.37pe -3.1redox peunits mol/kgwdensity 1.1596pressure 88.8Al 1.15E-08C 9.88E-01Ca 3.86E-02Cl 5.24E+00Fe 6.84E-04K 4.02E-02Mg 6.32E-02Na 4.90E+00S 1.17E-06Si 1.84E-04Sr 7.82E-04 water 1 #All rate data from Palandri and Kharaka, except for dawsonite... Equilibrium_phases 1 CO2(g) 1.75 1000 calcite 0 21.9 Equilibrium_phases 2-30calcite 0 21.9SOLUTION 1-30 #solution into which CO2 is dissolvedtemp 40pH 6.55pe -3.1redox peunits mol/kgwdensity 1.1596pressure 88.8Al 1.153e-08 C 9.941e-03 Ca 3.857e-02 Cl 5.237e+00 Fe 6.842e-04 K 4.024e-02 Mg 6.319e-02 Na 4.903e+00 S 1.170e-06 Si 1.843e-04 Sr 7.824e-04 water 1 KINETICS 1-30-cvodeQuartz-m0 158.2-parms 60.08 0.111 #https://escholarship.org/content/qt3h77d5bj/qt3h77d5bj_noSplash_925369b5813359fe46019e017e739492.pdfKaolinite-m0 3.1-parms 258.16 13.2 #https://escholarship.org/content/qt3h77d5bj/qt3h77d5bj_noSplash_925369b5813359fe46019e017e739492.pdfAlbite-m0 9-parms 263.02 0.164 #https://escholarship.org/content/qt3h77d5bj/qt3h77d5bj_noSplash_925369b5813359fe46019e017e739492.pdfDawsonite-m0 0.0 -parms 144.0 9.8 #hallevangMagnesite -m0 0.177 -parms 84.31 0.8 # https://www.sciencedirect.com/science/article/pii/S0883292714002315#b0230 Muscovite -m0 0 -parms 398.71 0.68INCREMENTAL_REACTIONS trueRATESQuartz-start10 reacS = parm(1)*parm(2)*m13 n = 0.015 logkH = -13.99 16 Ea = 87700 17 R = 8.3145 20 logkHT = logkH - (Ea/(2.303*R))*(1/Tk - 1/298.15) 21 kHT = 10^logkH22 k_p = (act("H+")^n)*kHT/123 if SR("Quartz") > 1 then expTerm = 1/((Tk^3)*(LOG(SR("Quartz")))^2) 24 k_n = 125 gamma_n = 5e1026 lamda = 1 30 if SR("Quartz") <= 1 then moles = reacS*kHT*(act("H+")^n)*(1 - SR("Quartz"))*time 40 if SR("Quartz") > 1 then moles = (-reacS*lamda*k_p*(SR("Quartz") - 1)^2 - k_n*exp(-gamma_n*expTerm))*time 100 save moles-endKaolinite-start10 reacS = parm(1)*parm(2)*m13 n = 0.77715 logkH = -11.31 16 Ea = 65900 17 R = 8.3145 20 logkHT = logkH - (Ea/(2.303*R))*(1/Tk - 1/298.15) 21 kHT = 10^logkH22 k_p = (act("H+")^n)*kHT/1023 if SR("Kaolinite") > 1 then expTerm = 1/((Tk^3)*(LOG(SR("Kaolinite")))^2) 24 k_n = 125 gamma_n = 2e1026 lamda = 1 30 if SR("Kaolinite") <= 1 then moles = reacS*kHT*(act("H+")^n)*(1 - SR("Kaolinite"))*time 40 if SR("Kaolinite") > 1 then moles = (-reacS*lamda*k_p*(SR("Kaolinite") - 1)^2 - k_n*exp(-gamma_n*expTerm))*time 100 save moles-endAlbite-start10 reacS = parm(1)*parm(2)*m13 n = 0.45715 logkH = -10.16 16 Ea = 65000 17 R = 8.3145 20 logkHT = logkH - (Ea/(2.303*R))*(1/Tk - 1/298.15) 21 kHT = 10^logkH22 k_p = (act("H+")^n)*kHT/123 if SR("Albite") > 1 then expTerm = 1/((Tk^3)*(LOG(SR("Albite")))^2) 24 k_n = 125 gamma_n = 2e1026 lamda = 1 30 if SR("Albite") <= 1 then moles = reacS*kHT*(act("H+")^n)*(1 - SR("Albite"))*time 40 if SR("Albite") > 1 then moles = (-reacS*lamda*k_p*(SR("Albite") - 1)^2 - k_n*exp(-gamma_n*expTerm))*time 100 save moles-endDawsonite-start10 reacS = parm(1)*parm(2)*m13 n = 0.9815 logkH = -4.5 16 Ea = 63820 17 R = 8.3145 20 logkHT = logkH - (Ea/(2.303*R))*(1/Tk - 1/298.15) 21 kHT = 10^logkH22 k_p = (act("H+")^n)*kHT23 if SR("Dawsonite") > 1 then expTerm = 1/((Tk^3)*(LOG(SR("Dawsonite")))^2) 24 k_n = 125 gamma_n = 2e1026 lamda = 1 30 if SR("Dawsonite") <= 1 then moles = reacS*kHT*(act("H+")^n)*(1 - SR("Dawsonite"))*time 40 if SR("Dawsonite") > 1 then moles = (-reacS*lamda*k_p*(SR("Dawsonite") - 1)^2 - k_n*exp(-gamma_n*expTerm))*time 100 save moles-endMagnesite-start10 reacS = parm(1)*parm(2)*m13 n = 1.015 logkH = -6.38 16 Ea = 14400 17 R = 8.3145 20 logkHT = logkH - (Ea/(2.303*R))*(1/Tk - 1/298.15) 21 kHT = 10^logkH22 k_p = 7.36E-1423 if SR("Magnesite") > 1 then expTerm = 1/((Tk^3)*(LOG(SR("Magnesite")))^2) 24 k_n = 125 gamma_n = 4e1026 lamda = 1 30 if SR("Magnesite") <= 1 then moles = reacS*kHT*(act("H+")^n)*(1 - SR("Magnesite"))*time 40 if SR("Magnesite") > 1 then moles = (-reacS*lamda*k_p*(SR("Magnesite") - 1)^2 - k_n*exp(-gamma_n*expTerm))*time 100 save moles-endMuscovite #Rate parameters from muscovite-start 10 reacS = parm(1)*parm(2)*m 13 n = 0.37 15 logkH = -11.85 16 Ea = 22000 17 R = 8.3145 20 logkHT = logkH - (Ea/(2.303*R))*(1/Tk - 1/298.15) 21 kHT = 10^logkH 22 k_p = (act("H+")^n)*kHT/1 23 if SR("Muscovite") > 1 then expTerm = 1/((Tk^3)*(LOG(SR("Muscovite")))^2) 24 k_n = 1 25 gamma_n = 2e10 26 lamda = 1 30 if SR("Muscovite") <= 1 then moles = reacS*kHT*(act("H+")^n)*(1 - SR("Muscovite"))*time 40 if SR("Muscovite") > 1 then moles = (-reacS*lamda*k_p*(SR("Muscovite") - 1)^2 - k_n*exp(-gamma_n*expTerm))*time 100 save moles-endKNOBS -iterations 150 -convergence_tolerance 1e-8 -tolerance 1e-14 -step_size 10 -pe_step_size 5 -diagonal_scale TRUE -debug_diffuse_layer TRUE -debug_inverse TRUE -debug_model TRUE -debug_prep TRUE -debug_set TRUE -logfile TRUETRANSPORT -cells 30 # total length = cells X length -length 1.0 # total depth = 100x1.0=100m -shifts 1000 # = -time_step 3.1536e+8 # in seconds -flow_direction forward -boundary_cond flux flux -diffc 3e-9 -dispersivity 0.1 # (m) -correct_disp true -punch_cells 1 15 30 -punch_frequency 1 -print_cells 1-30 -print_frequency 1SELECTED_OUTPUT -file rtm nurlan ebeity.sel -pe true -totals Br Ca Mg Na K Si C(4) Al Fe O(0) Fe(3) Fe(2) S(6) -si O2(g) CO2(g) -kinetic_reactants Quartz Kaolinite Albite Dawsonite Magnesite muscovite-equilibrium_phases CO2(g) calciteEND