TITLE <cement hydration- 28 days curing>PHASESAnhydrite CaSO4 = Ca+2 + SO4-2 log_k -4.36 delta_h -1.71 kcalBrucite Mg(OH)2 + 2H+ = 2H2O + Mg+2 log_k 17.07 delta_h -115.66 kcalC3AH6 Ca3Al2(OH)12 + 12H+ = 2Al+3 + 3Ca+2 + 12H2O log_k 82.22 delta_h -595.76 kcalC3FH6 Ca3Fe2(OH)12 + 12H+ = 3Ca+2 + 2Fe+3 + 12H2O log_k 73.65 delta_h -516.96 kcalCalcite CaCO3 = CO3-2 + Ca+2 log_k -8.48 delta_h -2.297 kcalEttringite Ca6Al2(SO4)3(OH)12:26H2O + 12H+ = 2Al+3 + 6Ca+2 + 38H2O + 3SO4-2 log_k 57.73 delta_h -389.36 kcalGypsum CaSO4:2H2O = Ca+2 + 2H2O + SO4-2 log_k -4.58 delta_h -0.109 kcalHemicarboaluminate Ca4Al2(CO3)0.5(OH)13:5.5H2O + 13H+ = 2Al+3 + 0.5CO3-2 + 4Ca+2 + 18.5H2O log_k 87.88 delta_h -604.27 kcalHydrotalcite Mg4Al2(OH)14:3H2O + 14H+ = 2Al+3 + 17H2O + 4Mg+2 log_k 75.97 delta_h -607.91 kcalMonocarboaluminate Ca4Al2(CO3)(OH)12:5H2O + 12H+ = 2Al+3 + CO3-2 + 4Ca+2 + 17H2O log_k 71.54 delta_h -533.14 kcalMonosulfoaluminate Ca4Al2(SO4)(OH)12:6H2O + 12H+ = 2Al+3 + 4Ca+2 + 18H2O + SO4-2 log_k 73.68 delta_h -553.08 kcalPortlandite Ca(OH)2 + 2H+ = Ca+2 + 2H2O log_k 22.79 delta_h -129.66 kcallime CaO + 2H+ = Ca+2 + H2O log_k 32.69 delta_h -193.91 kJpericlase MgO + 2H+ = H2O + Mg+2 log_k 21.5841 delta_h -151.23 kJEQUILIBRIUM_PHASES 1 Brucite 0 0 C2S 0 0.0598 C3A 0 0.0277 C3AH6 0 0 C3FH6 0 0 C3S 0 0.2912 C4AF 0 0.0174 Calcite 0 0.0059 ECSH1-KSH 0 0 ECSH1-NaSH 0 0 ECSH1-SH 0 0 ECSH1-SrSH 0 0 ECSH1-TobCa 0 0 Ettringite 0 0 Gypsum 0 0.018 Hemicarboaluminate 0 0 Hydrotalcite 0 0 Monocarboaluminate 0 0 Monosulfoaluminate 0 0 Portlandite 0 0SOLUTION 1 temp 20 pH 7 pe 4 redox pe units mmol/kgw density 1 -water 0.04 # kgREACTION 1 Calcite 0.0059 Gypsum 0.018 K2O 0.0006 K2SO4 0.0076 Na2O 0.0053 Na2SO4 0.0014 lime 0.0165 periclase 0.0158 0.4672 moles in 1 stepsRATES C2S_RATE_HYDRATION-start 10 REM PARM(1) = A,Blaine surface area of cement, m^2/kg 20 REM PARM(2) = A0,reference surface area of cement, m^2/kg 30 REM PARM(3) = E,the apparent activation energy of C2S, j/Mmol 40 REM PARM(4) = R,ideal gas constant, L·Pa·K-1·mol-1 50 REM PARM(5) = T0,the reference temperature, K 60 REM M = the hydration degree 70 a = M 80 r1 = 0.5*(1-a) 90 r2 = (((1-a)^0.67)*0.006)/(1-((1-a)^0.34))100 r3 = 0.2*((1-a)^5)110 IF(a > 0.54) THEN b = (((0.54-a)*3.333)+1)^4 ELSE b = 1120 min = r1130 IF min > r2 THEN min = r2140 IF min > r3 THEN min = r3150 a_rate = b*min*2.0736*(PARM(1)/PARM(2))*EXP((PARM(3)/PARM(4))*((1/PARM(5))-(1/TK)))160 a_delta = a_rate*TIME/86400170 SAVE-a_delta180 PUT(a_delta, 1)190 PRINT TIME, a_delta, r1, r2, r3, b-end C2S-start10 rate = GET(1) * M020 SAVE rate-end C3S_RATE_HYDRATION-start 10 REM PARM(1) = A,Blaine surface area of cement, m^2/kg 20 REM PARM(2) = A0,reference surface area of cement, m^2/kg 30 REM PARM(3) = E,the apparent activation energy of C3S, j/Mmol 40 REM PARM(4) = R,ideal gas constant, L·Pa·K-1·mol-1 50 REM PARM(5) = T0,the reference temperature, K 60 REM M = the hydration degree 70 a = M 80 r1 = 2.14*(1-a)*((-1*LOG(1-a))^0.3) 90 r2 = (((1-a)^0.67)*0.05)/(1-((1-a)^0.34))100 r3 = 1.1*((1-a)^3.3)110 IF(a > 0.72) THEN b = (((0.72-a)*3.333)+1)^4 ELSE b = 1120 min = r1130 IF min > r2 THEN min = r2140 IF min > r3 THEN min = r3150 a_rate = b*min*2.0736*(PARM(1)/PARM(2))*EXP((PARM(3)/PARM(4))*((1/PARM(5))-(1/TK)))160 a_delta = a_rate*TIME/86400170 SAVE-a_delta180 PUT(a_delta, 2)-end C3S-start10 rate = GET(2) * M020 SAVE rate-end C3A_RATE_HYDRATION-start 10 REM PARM(1) = A,Blaine surface area of cement, m^2/kg 20 REM PARM(2) = A0,reference surface area of cement, m^2/kg 30 REM PARM(3) = E,the apparent activation energy of C3A, j/Mmol 40 REM PARM(4) = R,ideal gas constant, L·Pa·K-1·mol-1 50 REM PARM(5) = T0,the reference temperature, K 60 REM M = the hydration degree 70 a = M 80 r1 = 1.18*(1-a)*((-1*LOG(1-a))^0.15) 90 r2 = (((1-a)^0.67)*0.04)/(1-((1-a)^0.34))100 r3 = ((1-a)^3.2)110 IF(a > 0.64) THEN b = (((0.64-a)*3.333)+1)^4 ELSE b = 1120 min = r1130 IF min > r2 THEN min = r2140 IF min > r3 THEN min = r3150 a_rate = b*min*2.0736*(PARM(1)/PARM(2))*EXP((PARM(3)/PARM(4))*((1/PARM(5))-(1/TK)))160 a_delta = a_rate*TIME/86400170 SAVE-a_delta180 PUT(a_delta, 3)-end C3A-start10 rate = GET(3) * M020 SAVE rate-end C4AF_RATE_HYDRATION-start 10 REM PARM(1) = A,Blaine surface area of cement, m^2/kg 20 REM PARM(2) = A0,reference surface area of cement, m^2/kg 30 REM PARM(3) = E,the apparent activation energy of C4AF, j/Mmol 40 REM PARM(4) = R,ideal gas constant, L·Pa·K-1·mol-1 50 REM PARM(5) = T0,the reference temperature, K 60 REM M = the hydration degree 70 a = M 80 r1 = 0.53*(1-a)*((-1*LOG(1-a))^0.3) 90 r2 = (((1-a)^0.67)*0.015)/(1-((1-a)^0.34))100 r3 = (0.4*(1-a)^3.7)110 IF(a > 0.58) THEN b = (((0.58-a)*3.333)+1)^4 ELSE b = 1120 min = r1130 IF min > r2 THEN min = r2140 IF min > r3 THEN min = r3150 a_rate = b*min*2.0736*(PARM(1)/PARM(2))*EXP((PARM(3)/PARM(4))*((1/PARM(5))-(1/TK)))160 a_delta = a_rate*TIME/86400170 SAVE-a_delta180 PUT(a_delta, 4)-end C4AF-start10 rate = GET(4) * M020 SAVE rate-endINCREMENTAL_REACTIONS TrueKINETICS 1C2S -formula (CaO)2SiO2 1 -m 0.0598 -m0 0.0598 -tol 1e-008C3S -formula (CaO)3SiO2 1 -m 0.2912 -m0 0.2912 -tol 1e-008C2S_RATE_HYDRATION -formula H 0 -m 0.001 -m0 0.001 -parms 413 385 20.785 8.3144 293.15 -tol 1e-008C3S_RATE_HYDRATION -formula H 0 -m 0.001 -m0 0.001 -parms 413 385 41.57 8.3144 293.15 -tol 1e-008C3A -formula (CaO)3Al2O3 1 -m 0.0277 -m0 0.0277 -tol 1e-008C3A_RATE_HYDRATION -formula H 0 -m 0.001 -m0 0.001 -parms 413 385 54.04 8.3144 293.15 -tol 1e-008C4AF -formula (CaO)4(Al2O3)(Fe2O3) 1 -m 0.0174 -m0 0.0174 -tol 1e-008C4AF_RATE_HYDRATION -formula H 0 -m 0.001 -m0 0.001 -parms 413 385 34.087 8.3144 293.15 -tol 1e-008-steps 2419200 in 28 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 5000SAVE solution 2ENDTITLE sulfate attack sulfate solution= Na2SO4 "solution" concentration= 44 g/L TIME= 100 DAYSSOLUTION 3 temp 25 pH 7 pe 4 redox pe units mmol/kgw density 1 Na 14.54 g/kgw S(6) 30.36 g/kgw -water 0.98 # kgRATES Portlandite-start 10 REM M = current number of moles of portlandite 20 REM M0 = number of moles of portlandite initially present 30 REM parm(1) = A/V, m^2/L 40 REM parm (2) = exponent for M/M0 50 REM parm (3) = rate constant (rf), (mol.m-2.s-1) 60 si_port = SI("portlandite") 70 IF(M <= 0 AND si_port < 0) THEN GOTO 130 80 IF M0 > 0 THEN t = M/M0 90 IF t = 0 THEN t = 1100 area = PARM(1)*(t)^PARM(2)110 rate = area*1e-3*PARM(3)*(1-10^(si_port))120 moles = rate*TIME130 SAVE moles-end Monosulfoaluminate-start 10 REM M = current number of moles of Monosulfoaluminate 20 REM M0 = number of moles of Monosulfoaluminate initially present 30 REM parm(1) = A/V, m^2/L 40 REM parm (2) = exponent for M/M0 50 REM parm (3) = rate constant (rf), (mol.m-2.s-1) 60 si_ms = SI("Monosulfoaluminate") 70 IF(M <= 0 AND si_ms < 0) THEN GOTO 130 80 IF M0 > 0 THEN t = M/M0 90 IF t = 0 THEN t = 1100 area = PARM(1)*(t)^PARM(2)110 rate = area*1e-3*PARM(3)*(1-10^(si_ms))120 moles = rate*TIME130 SAVE moles-end Ettringite-start 10 REM M = current number of moles of Ettringite 20 REM M0 = number of moles of Ettringite initially present 30 REM parm(1) = A/V, m^2/L 40 REM parm (2) = exponent for M/M0 50 REM parm (3) = rate constant (rf), (mol.m-2.s-1) 60 si_Et = SI("Ettringite") 70 IF(M <= 0 AND si_Et < 0) THEN GOTO 130 80 IF M0 > 0 THEN t = M/M0 90 IF t = 0 THEN t = 1100 area = PARM(1)*(t)^PARM(2)110 rate = area*1e-3*PARM(3)*(1-10^(si_Et))120 moles = rate*TIME130 SAVE moles-end Hydrotalcite-start 10 REM M = current number of moles of Hydrotalcite 20 REM M0 = number of moles of Hydrotalcite initially present 30 REM parm(1) = A/V, m^2/L 40 REM parm (2) = exponent for M/M0 50 REM parm (3) = rate constant (rf), (mol.m-2.s-1) 60 si_Ht = SI("Hydrotalcite") 70 IF(M <= 0 AND si_Ht < 0) THEN GOTO 130 80 IF M0 > 0 THEN t = M/M0 90 IF t = 0 THEN t = 1100 area = PARM(1)*(t)^PARM(2)110 rate = area*1e-3*PARM(3)*(1-10^(si_Ht))120 moles = rate*TIME130 SAVE moles-end Gypsum-start 10 REM M = current number of moles of Gypsum 20 REM M0 = number of moles of Gypsum initially present 30 REM parm(1) = A/V, m^2/L 40 REM parm (2) = exponent for M/M0 50 REM parm (3) = rate constant (rf), (mol.m-2.s-1) 60 si_Gyp = SI("Gypsum") 70 IF(M <= 0 AND si_Gyp < 0) THEN GOTO 130 80 IF M0 > 0 THEN t = M/M0 90 IF t = 0 THEN t = 1100 area = PARM(1)*(t)^PARM(2)110 rate = area*1e-3*PARM(3)*(1-10^(si_Gyp))120 moles = rate*TIME130 SAVE moles-endKINETICS 2Portlandite -formula Ca(OH)2 -1 -m 1 -m0 1 -parms 16.5 0.67 2.24e-008 -tol 1e-008Gypsum -formula CaSO4:2H2O -1 -m 1 -m0 1 -parms 9.8 0.67 0.0016 -tol 1e-008Hydrotalcite -formula Mg4Al2(OH)14:3H2O -1 -m 1 -m0 1 -parms 9.8 0.67 1e-009 -tol 1e-008Monosulfoaluminate -formula Ca4Al2(SO4)(OH)12:6H2O -1 -m 1 -m0 1 -parms 5.7 0.67 6.76e-012 -tol 1e-008Ettringite -formula Ca6Al2(SO4)3(OH)12:26H2O -1 -m 1 -m0 1 -parms 9.8 0.67 7.08e-013 -tol 1e-008C2S -formula (CaO)2SiO2 1 -m 0.023991 -m0 0.023991 -tol 1e-008C2S_RATE_HYDRATION -formula H 0 -m 0.60056 -m0 0.60056 -parms 413 385 20.785 8.3144 293.15 -tol 1e-008C3A -formula (CaO)3Al2O3 1 -m 0.0059445 -m0 0.0059445 -tol 1e-008C3A_RATE_HYDRATION -formula H 0 -m 0.78734 -m0 0.78734 -parms 413 385 54.04 8.3144 293.15 -tol 1e-008C3S -formula (CaO)3SiO2 1 -m 0.049792 -m0 0.049792 -tol 1e-008C3S_RATE_HYDRATION -formula H 0 -m 0.83101 -m0 0.83101 -parms 413 385 41.57 8.3144 293.15 -tol 1e-008C4AF -formula (CaO)4(Al2O3)(Fe2O3) 1 -m 0.0052423 -m0 0.0052423 -tol 1e-008C4AF_RATE_HYDRATION -formula H 0 -m 0.70057 -m0 0.70057 -parms 413 385 34.078 8.3144 293.15 -tol 1e-008-steps 8640000 in 100 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 500USER_GRAPH 1 -headings Time Portlandite Monosulfoaluminate Ettringite Hydrotalcite Gypsum -axis_titles "Time (days)" "phase weight (percent)" "" -chart_title "phase weight (percent)" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X total_time/8640020 GRAPH_Y ((equi("Portlandite") * 74) / ((equi("Portlandite") * 74)+( TOT("water")*1000))) * 100, ((equi("Monosulfoaluminate") * 74) / ((equi("Monosulfoaluminate") * 74)+( TOT("water")*1000))) * 100, ((equi("Ettringite ") * 74) / ((equi("Ettringite") * 74)+( TOT("water")*1000))) * 100, ((equi("Hydrotalcite") * 74) / ((equi("Hydrotalcite") * 74)+( TOT("water")*1000))) * 100, ((equi("Gypsum") * 74) / ((equi("Gypsum") * 74)+( TOT("water")*1000))) * 100 -end -active trueEQUILIBRIUM_PHASES 2 Brucite 0 0 C2S 0 0 C3A 0 0 C3AH6 0 0 C3FH6 0 0 C3S 0 0 C4AF 0 0 Calcite 0 0 ECSH1-KSH 0 0 ECSH1-NaSH 0 0 ECSH1-SH 0 0 ECSH1-SrSH 0 0 ECSH1-TobCa 0 0 Ettringite 0 0 Gypsum 0 0 Hemicarboaluminate 0 0 Hydrotalcite 0 0 Monocarboaluminate 0 0 Monosulfoaluminate 0 0 Portlandite 0 0END
TITLE <cement hydration- 28 days curing>PHASESAnhydrite CaSO4 = Ca+2 + SO4-2 log_k -4.36 delta_h -1.71 kcalBrucite Mg(OH)2 + 2H+ = 2H2O + Mg+2 log_k 17.07 delta_h -115.66 kcalC3AH6 Ca3Al2(OH)12 + 12H+ = 2Al+3 + 3Ca+2 + 12H2O log_k 82.22 delta_h -595.76 kcalC3FH6 Ca3Fe2(OH)12 + 12H+ = 3Ca+2 + 2Fe+3 + 12H2O log_k 73.65 delta_h -516.96 kcalCalcite CaCO3 = CO3-2 + Ca+2 log_k -8.48 delta_h -2.297 kcalEttringite Ca6Al2(SO4)3(OH)12:26H2O + 12H+ = 2Al+3 + 6Ca+2 + 38H2O + 3SO4-2 log_k 57.73 delta_h -389.36 kcalGypsum CaSO4:2H2O = Ca+2 + 2H2O + SO4-2 log_k -4.58 delta_h -0.109 kcalHemicarboaluminate Ca4Al2(CO3)0.5(OH)13:5.5H2O + 13H+ = 2Al+3 + 0.5CO3-2 + 4Ca+2 + 18.5H2O log_k 87.88 delta_h -604.27 kcalHydrotalcite Mg4Al2(OH)14:3H2O + 14H+ = 2Al+3 + 17H2O + 4Mg+2 log_k 75.97 delta_h -607.91 kcalMonocarboaluminate Ca4Al2(CO3)(OH)12:5H2O + 12H+ = 2Al+3 + CO3-2 + 4Ca+2 + 17H2O log_k 71.54 delta_h -533.14 kcalMonosulfoaluminate Ca4Al2(SO4)(OH)12:6H2O + 12H+ = 2Al+3 + 4Ca+2 + 18H2O + SO4-2 log_k 73.68 delta_h -553.08 kcalPortlandite Ca(OH)2 + 2H+ = Ca+2 + 2H2O log_k 22.79 delta_h -129.66 kcallime CaO + 2H+ = Ca+2 + H2O log_k 32.69 delta_h -193.91 kJpericlase MgO + 2H+ = H2O + Mg+2 log_k 21.5841 delta_h -151.23 kJEQUILIBRIUM_PHASES 1 Ettringite 0 0 Hemicarboaluminate 0 0 Hydrotalcite 0 0 Monocarboaluminate 0 0 Monosulfoaluminate 0 0 Portlandite 0 0 CSHQ-JenD 0 0 CSHQ-JenH 0 0 CSHQ-TobD 0 0 CSHQ-TobH 0 0SOLUTION 1 temp 20 pH 7 pe 4 redox pe units mmol/kgw density 1 -water 0.04 # kgREACTION 1 Calcite 0.0059 Gypsum 0.018 K2O 0.0006 K2SO4 0.0076 Na2O 0.0053 Na2SO4 0.0014 lime 0.0165 periclase 0.0158 0.4672 moles in 1 stepsRATES C2S_RATE_HYDRATION-start 10 REM PARM(1) = A,Blaine surface area of cement, m^2/kg 20 REM PARM(2) = A0,reference surface area of cement, m^2/kg 30 REM PARM(3) = E,the apparent activation energy of C2S, j/Mmol 40 REM PARM(4) = R,ideal gas constant, L·Pa·K-1·mol-1 50 REM PARM(5) = T0,the reference temperature, K 60 REM M = the hydration degree 70 a = M 80 r1 = 0.5*(1-a) 90 r2 = (((1-a)^0.67)*0.006)/(1-((1-a)^0.34))100 r3 = 0.2*((1-a)^5)110 IF(a > 0.54) THEN b = (((0.54-a)*3.333)+1)^4 ELSE b = 1120 min = r1130 IF min > r2 THEN min = r2140 IF min > r3 THEN min = r3150 a_rate = b*min*2.0736*(PARM(1)/PARM(2))*EXP((PARM(3)/PARM(4))*((1/PARM(5))-(1/TK)))160 a_delta = a_rate*TIME/86400170 SAVE-a_delta180 PUT(a_delta, 1)190 PRINT TIME, a_delta, r1, r2, r3, b-end C2S-start10 rate = GET(1) * M020 SAVE rate-end C3S_RATE_HYDRATION-start 10 REM PARM(1) = A,Blaine surface area of cement, m^2/kg 20 REM PARM(2) = A0,reference surface area of cement, m^2/kg 30 REM PARM(3) = E,the apparent activation energy of C3S, j/Mmol 40 REM PARM(4) = R,ideal gas constant, L·Pa·K-1·mol-1 50 REM PARM(5) = T0,the reference temperature, K 60 REM M = the hydration degree 70 a = M 80 r1 = 2.14*(1-a)*((-1*LOG(1-a))^0.3) 90 r2 = (((1-a)^0.67)*0.05)/(1-((1-a)^0.34))100 r3 = 1.1*((1-a)^3.3)110 IF(a > 0.72) THEN b = (((0.72-a)*3.333)+1)^4 ELSE b = 1120 min = r1130 IF min > r2 THEN min = r2140 IF min > r3 THEN min = r3150 a_rate = b*min*2.0736*(PARM(1)/PARM(2))*EXP((PARM(3)/PARM(4))*((1/PARM(5))-(1/TK)))160 a_delta = a_rate*TIME/86400170 SAVE-a_delta180 PUT(a_delta, 2)-end C3S-start10 rate = GET(2) * M020 SAVE rate-end C3A_RATE_HYDRATION-start 10 REM PARM(1) = A,Blaine surface area of cement, m^2/kg 20 REM PARM(2) = A0,reference surface area of cement, m^2/kg 30 REM PARM(3) = E,the apparent activation energy of C3A, j/Mmol 40 REM PARM(4) = R,ideal gas constant, L·Pa·K-1·mol-1 50 REM PARM(5) = T0,the reference temperature, K 60 REM M = the hydration degree 70 a = M 80 r1 = 1.18*(1-a)*((-1*LOG(1-a))^0.15) 90 r2 = (((1-a)^0.67)*0.04)/(1-((1-a)^0.34))100 r3 = ((1-a)^3.2)110 IF(a > 0.64) THEN b = (((0.64-a)*3.333)+1)^4 ELSE b = 1120 min = r1130 IF min > r2 THEN min = r2140 IF min > r3 THEN min = r3150 a_rate = b*min*2.0736*(PARM(1)/PARM(2))*EXP((PARM(3)/PARM(4))*((1/PARM(5))-(1/TK)))160 a_delta = a_rate*TIME/86400170 SAVE-a_delta180 PUT(a_delta, 3)-end C3A-start10 rate = GET(3) * M020 SAVE rate-end C4AF_RATE_HYDRATION-start 10 REM PARM(1) = A,Blaine surface area of cement, m^2/kg 20 REM PARM(2) = A0,reference surface area of cement, m^2/kg 30 REM PARM(3) = E,the apparent activation energy of C4AF, j/Mmol 40 REM PARM(4) = R,ideal gas constant, L·Pa·K-1·mol-1 50 REM PARM(5) = T0,the reference temperature, K 60 REM M = the hydration degree 70 a = M 80 r1 = 0.53*(1-a)*((-1*LOG(1-a))^0.3) 90 r2 = (((1-a)^0.67)*0.015)/(1-((1-a)^0.34))100 r3 = (0.4*(1-a)^3.7)110 IF(a > 0.58) THEN b = (((0.58-a)*3.333)+1)^4 ELSE b = 1120 min = r1130 IF min > r2 THEN min = r2140 IF min > r3 THEN min = r3150 a_rate = b*min*2.0736*(PARM(1)/PARM(2))*EXP((PARM(3)/PARM(4))*((1/PARM(5))-(1/TK)))160 a_delta = a_rate*TIME/86400170 SAVE-a_delta180 PUT(a_delta, 4)-end C4AF-start10 rate = GET(4) * M020 SAVE rate-endINCREMENTAL_REACTIONS TrueKINETICS 1C2S -formula (CaO)2SiO2 1 -m 0.0598 -m0 0.0598 -tol 1e-008C3S -formula (CaO)3SiO2 1 -m 0.2912 -m0 0.2912 -tol 1e-008C2S_RATE_HYDRATION -formula H 0 -m 0.001 -m0 0.001 -parms 413 385 20.785 8.3144 293.15 -tol 1e-008C3S_RATE_HYDRATION -formula H 0 -m 0.001 -m0 0.001 -parms 413 385 41.57 8.3144 293.15 -tol 1e-008C3A -formula (CaO)3Al2O3 1 -m 0.0277 -m0 0.0277 -tol 1e-008C3A_RATE_HYDRATION -formula H 0 -m 0.001 -m0 0.001 -parms 413 385 54.04 8.3144 293.15 -tol 1e-008C4AF -formula (CaO)4(Al2O3)(Fe2O3) 1 -m 0.0174 -m0 0.0174 -tol 1e-008C4AF_RATE_HYDRATION -formula H 0 -m 0.001 -m0 0.001 -parms 413 385 34.087 8.3144 293.15 -tol 1e-008-steps 2419200 in 28 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 5000SAVE solution 2ENDTITLE sulfate attack sulfate solution= Na2SO4 "solution" concentration= 44 g/L TIME= 100 DAYSSOLUTION 3 temp 25 pH 7 pe 4 redox pe units mmol/kgw density 1 Na 14.54 g/kgw S(6) 30.36 g/kgw -water 0.98 # kgRATES Portlandite-start 10 REM M = current number of moles of portlandite 20 REM M0 = number of moles of portlandite initially present 30 REM parm(1) = A/V, m^2/L 40 REM parm (2) = exponent for M/M0 50 REM parm (3) = rate constant (rf), (mol.m-2.s-1) 60 si_port = SI("portlandite") 70 IF(M <= 0 AND si_port < 0) THEN GOTO 130 80 IF M0 > 0 THEN t = M/M0 90 IF t = 0 THEN t = 1100 area = PARM(1)*(t)^PARM(2)110 rate = area*1e-3*PARM(3)*(1-10^(si_port))120 moles = rate*TIME130 SAVE moles-end Monosulfoaluminate-start 10 REM M = current number of moles of Monosulfoaluminate 20 REM M0 = number of moles of Monosulfoaluminate initially present 30 REM parm(1) = A/V, m^2/L 40 REM parm (2) = exponent for M/M0 50 REM parm (3) = rate constant (rf), (mol.m-2.s-1) 60 si_ms = SI("Monosulfoaluminate") 70 IF(M <= 0 AND si_ms < 0) THEN GOTO 130 80 IF M0 > 0 THEN t = M/M0 90 IF t = 0 THEN t = 1100 area = PARM(1)*(t)^PARM(2)110 rate = area*1e-3*PARM(3)*(1-10^(si_ms))120 moles = rate*TIME130 SAVE moles-end Ettringite-start 10 REM M = current number of moles of Ettringite 20 REM M0 = number of moles of Ettringite initially present 30 REM parm(1) = A/V, m^2/L 40 REM parm (2) = exponent for M/M0 50 REM parm (3) = rate constant (rf), (mol.m-2.s-1) 60 si_Et = SI("Ettringite") 70 IF(M <= 0 AND si_Et < 0) THEN GOTO 130 80 IF M0 > 0 THEN t = M/M0 90 IF t = 0 THEN t = 1100 area = PARM(1)*(t)^PARM(2)110 rate = area*1e-3*PARM(3)*(1-10^(si_Et))120 moles = rate*TIME130 SAVE moles-end Hydrotalcite-start 10 REM M = current number of moles of Hydrotalcite 20 REM M0 = number of moles of Hydrotalcite initially present 30 REM parm(1) = A/V, m^2/L 40 REM parm (2) = exponent for M/M0 50 REM parm (3) = rate constant (rf), (mol.m-2.s-1) 60 si_Ht = SI("Hydrotalcite") 70 IF(M <= 0 AND si_Ht < 0) THEN GOTO 130 80 IF M0 > 0 THEN t = M/M0 90 IF t = 0 THEN t = 1100 area = PARM(1)*(t)^PARM(2)110 rate = area*1e-3*PARM(3)*(1-10^(si_Ht))120 moles = rate*TIME130 SAVE moles-end Gypsum-start 10 REM M = current number of moles of Gypsum 20 REM M0 = number of moles of Gypsum initially present 30 REM parm(1) = A/V, m^2/L 40 REM parm (2) = exponent for M/M0 50 REM parm (3) = rate constant (rf), (mol.m-2.s-1) 60 si_Gyp = SI("Gypsum") 70 IF(M <= 0 AND si_Gyp < 0) THEN GOTO 130 80 IF M0 > 0 THEN t = M/M0 90 IF t = 0 THEN t = 1100 area = PARM(1)*(t)^PARM(2)110 rate = area*1e-3*PARM(3)*(1-10^(si_Gyp))120 moles = rate*TIME130 SAVE moles-endKINETICS 2Portlandite -formula Ca(OH)2 -1 -m 1 -m0 1 -parms 16.5 0.67 2.24e-008 -tol 1e-008Gypsum -formula CaSO4:2H2O -1 -m 1 -m0 1 -parms 9.8 0.67 0.0016 -tol 1e-008Hydrotalcite -formula Mg4Al2(OH)14:3H2O -1 -m 1 -m0 1 -parms 9.8 0.67 1e-009 -tol 1e-008Monosulfoaluminate -formula Ca4Al2(SO4)(OH)12:6H2O -1 -m 1 -m0 1 -parms 5.7 0.67 6.76e-012 -tol 1e-008Ettringite -formula Ca6Al2(SO4)3(OH)12:26H2O -1 -m 1 -m0 1 -parms 9.8 0.67 7.08e-013 -tol 1e-008C2S -formula (CaO)2SiO2 1 -m 0.023991 -m0 0.023991 -tol 1e-008C2S_RATE_HYDRATION -formula H 0 -m 0.60056 -m0 0.60056 -parms 413 385 20.785 8.3144 293.15 -tol 1e-008C3A -formula (CaO)3Al2O3 1 -m 0.0059445 -m0 0.0059445 -tol 1e-008C3A_RATE_HYDRATION -formula H 0 -m 0.78734 -m0 0.78734 -parms 413 385 54.04 8.3144 293.15 -tol 1e-008C3S -formula (CaO)3SiO2 1 -m 0.049792 -m0 0.049792 -tol 1e-008C3S_RATE_HYDRATION -formula H 0 -m 0.83101 -m0 0.83101 -parms 413 385 41.57 8.3144 293.15 -tol 1e-008C4AF -formula (CaO)4(Al2O3)(Fe2O3) 1 -m 0.0052423 -m0 0.0052423 -tol 1e-008C4AF_RATE_HYDRATION -formula H 0 -m 0.70057 -m0 0.70057 -parms 413 385 34.078 8.3144 293.15 -tol 1e-008-steps 8640000 in 100 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 500USER_GRAPH 1 -headings Time Portlandite Monosulfoaluminate Ettringite Hydrotalcite Gypsum -axis_titles "Time (days)" "phase weight (percent)" "" -chart_title "phase weight (percent)" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X total_time/8640020 GRAPH_Y ((equi("Portlandite") * 74) / ((equi("Portlandite") * 74)+( TOT("water")*1000))) * 100, ((equi("Monosulfoaluminate") * 74) / ((equi("Monosulfoaluminate") * 74)+( TOT("water")*1000))) * 100, ((equi("Ettringite ") * 74) / ((equi("Ettringite") * 74)+( TOT("water")*1000))) * 100, ((equi("Hydrotalcite") * 74) / ((equi("Hydrotalcite") * 74)+( TOT("water")*1000))) * 100, ((equi("Gypsum") * 74) / ((equi("Gypsum") * 74)+( TOT("water")*1000))) * 100 -end -active trueEQUILIBRIUM_PHASES 2 Ettringite 0 0 Gypsum 0 0 Hemicarboaluminate 0 0 Hydrotalcite 0 0 Monocarboaluminate 0 0 Monosulfoaluminate 0 0 Portlandite 0 0 CSHQ-JenD 0 0 CSHQ-JenH 0 0 CSHQ-TobD 0 0 CSHQ-TobH 0 0END
USER_GRAPH 1 -headings Days Si -axis_titles "Days" "Moles per kilogram water" "" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X total_time/8640020 GRAPH_Y TOT("Si") -end