PhreeqcUsers Discussion Forum

Registrations currently disabled due to excessive spam. Please email phreeqcusers at gmail.com to request an account.
Welcome Guest
 

  • Forum Home
  • Login
  • Register

  • PhreeqcUsers Discussion Forum »
  • Processes »
  • Reactive transport modelling »
  • How can I plot the site contribution of cation exchange model for 1D model
« previous next »
  • Print
Pages: [1]   Go Down

Author Topic: How can I plot the site contribution of cation exchange model for 1D model  (Read 2360 times)

Jeonghwan Hwang

  • Top Contributor
  • Posts: 77
How can I plot the site contribution of cation exchange model for 1D model
« on: 26/06/20 03:10 »
Hello, this is Jeonghwan Hwang.
Thank you for reading.

I am studying the adsorption of Cs using the Cation exchange model.
There are three adsorption points in my model.
I applied this model in example 11.

The part I want to see is below.
1) Behavior characteristics of Cs according to selectivity coefficient of each adsorption point
2) Examine the impact of each site on Cs behavior

I set up the code below.
However, the distribution of the three adsorption sites (CsZ, CsX, CsD) could not be confirmed by dividing them.
Is there any way to categorize and express these?

Thank you

Sincerely,

Jeonghwan Hwang


===================================================
database c://phreeqc/database/LLNL.dat
 
SOLUTION 0 
    temp    23.0
    units moles/l
    Cs 9.17E-05
    K 1.10E-03
    Na 1.60E-05
    Ca 2.10E-06
    Mg 7.10E-06
   
SOLUTION 1-40  Initial solution for column
    temp    23.0
    units moles/l
    K 1.10E-03
    Na 1.60E-05
    Ca 2.10E-06
    Mg 7.10E-06
END

 EXCHANGE_MASTER_SPECIES
    Z   Z- #FES
    D   D- #TypeII
    X   X- #planar
 
EXCHANGE_SPECIES
    Z- = Z- #FES
    log_k 0.0
    -davies
    Na+ + KZ = NaZ + K+  #FES
    log_k -2.5
    -davies
    K+ + Z- = KZ #FES
    log_k 0.0
    -davies
    Ca+2 + 2KZ = CaZ2 + 2K+  #FES
    log_k -10.7
    -davies
 
    D- = D- #TypeII
    log_k 0.0
    -davies
    Na+ + KD = NaD + K+ #TypeII
    log_k -2.1
    -davies
    K+ + D- = KD #TypeII
    log_k 0.0
    -davies
    Ca+2 + 2KD = CaD2 + 2K+  #TypeII
    log_k -4.6
    -davies
 
    X- = X- #planar
    log_k 0.0
    -davies
    Na+ + KX = NaX + K+ #planar
    log_k -1.0
    -davies
    K+ + X- = KX #planar
    log_k 0.0
    -davies
    Ca+2 + 2KX = CaX2 + 2K+  #planar
    log_k -3.9
    -davies
 
    Cs+ + KZ = CsZ + K+  #FES
    log_k 4.8
    -davies
    Cs+ + KD = CsD + K+  #TypeII
    log_k 1.8
    -davies
    Cs+ + KX = CsX + K+  #planar
    log_k 1.1
    -davies
 end
 
EXCHANGE 1-40
      KZ  9.06E-08
      KD  3.02E-05
      KX  5.97E-05
COPY cell 1 101
END

ADVECTION
        -cells           40
        -shifts          100  #Advection step number / 1 shift = 1/40 pore volume
        -punch_cells     40
        -punch_frequency 1
        -print_cells     40
        -print_frequency 20
PRINT; -reset false; -status false

SELECTED_OUTPUT
        -file            hwang.txt
        -reset           false
        -step
        -totals          CsZ CsD CsX Ca
   
USER_PUNCH
  -heading  Pore_vol
  10 PUNCH (STEP_NO + .5) / 40.
 
USER_GRAPH 1 Example 11
  -chart_title "Using ADVECTION Data Block"
  -headings CsZ CsD CsX Ca
  -axis_titles "Pore volumes" "Millimoles per kilogram water"
  -axis_scale x_axis 0 2.5
  -axis_scale y_axis 1E-8 1E-1 auto auto log
  -plot_concentration_vs time
  -start
  10 x = (STEP_NO + 0.5) / cell_no
  20 PLOT_XY x, TOT("CsZ"), symbol = None
  30 PLOT_XY x, TOT("CsD"), symbol = None
  40 PLOT_XY x, TOT("CsX"), symbol = None
  50 PLOT_XY x, TOT("Cs"), symbol = None
  60 PUT(1, 1)
  -end
 
COPY cell 101 1-40
END


USER_GRAPH 1
        -detach
END
Logged

dlparkhurst

  • Global Moderator
  • *****
  • Posts: 4036
Re: How can I plot the site contribution of cation exchange model for 1D model
« Reply #1 on: 26/06/20 04:19 »
I think your main problem is that the Basic function TOT refers to total element concentrations, like TOT("Cs"), but it is not used for exchange species. For exchange species, the appropriate function is MOL("CsX") or LM("CsX").

I have added a small amount of Cs to solution 1-40 so that CsX, CsD, and CsZ will be defined (otherwise molalities will be 10^-99 when Cs is absent, which is difficult to plot on the log scale). I also simply plot the distribution of species on the X exchanger as a function of cell number after one pore volume. You can adapt the simulation and plot as you see fit.


Code: [Select]
SOLUTION 0
    temp    23.0
    units moles/l
    Cs 9.17E-05
    K 1.10E-03
    Na 1.60E-05
    Ca 2.10E-06
    Mg 7.10E-06
   
SOLUTION 1-40  Initial solution for column
    temp    23.0
    units moles/l
    Cs 1e-10
    K 1.10E-03
    Na 1.60E-05
    Ca 2.10E-06
    Mg 7.10E-06
END

 EXCHANGE_MASTER_SPECIES
    Z   Z- #FES
    D   D- #TypeII
    X   X- #planar
 
EXCHANGE_SPECIES
    Z- = Z- #FES
    log_k 0.0
    -davies
    Na+ + KZ = NaZ + K+  #FES
    log_k -2.5
    -davies
    K+ + Z- = KZ #FES
    log_k 0.0
    -davies
    Ca+2 + 2KZ = CaZ2 + 2K+  #FES
    log_k -10.7
    -davies
 
    D- = D- #TypeII
    log_k 0.0
    -davies
    Na+ + KD = NaD + K+ #TypeII
    log_k -2.1
    -davies
    K+ + D- = KD #TypeII
    log_k 0.0
    -davies
    Ca+2 + 2KD = CaD2 + 2K+  #TypeII
    log_k -4.6
    -davies
 
    X- = X- #planar
    log_k 0.0
    -davies
    Na+ + KX = NaX + K+ #planar
    log_k -1.0
    -davies
    K+ + X- = KX #planar
    log_k 0.0
    -davies
    Ca+2 + 2KX = CaX2 + 2K+  #planar
    log_k -3.9
    -davies
 
    Cs+ + KZ = CsZ + K+  #FES
    log_k 4.8
    -davies
    Cs+ + KD = CsD + K+  #TypeII
    log_k 1.8
    -davies
    Cs+ + KX = CsX + K+  #planar
    log_k 1.1
    -davies
 end
 
EXCHANGE 1-40
      KZ  9.06E-08
      KD  3.02E-05
      KX  5.97E-05
END

ADVECTION
        -cells           40
        -shifts          40 #100 
        #-punch_cells     40
        -punch_frequency 40
        #-print_cells     40
        -print_frequency 1
#PRINT; -reset false; -status false

SELECTED_OUTPUT
        -file            hwang.txt
        -reset           false
        -step
        -molalities         CsZ CzD CsX
        -total              Cs
   
USER_GRAPH 1 Example 11
    -headings               KX NgX2 NaX CaX2 CsX
    -axis_titles            "Cell number" "Molality" ""
    -chart_title            "Using ADVECTION Data Block"
    -axis_scale y_axis      auto auto auto auto log
    -initial_solutions      false
    -connect_simulations    true
    -plot_concentration_vs  x
  -start
10 x = cell_no
20 PLOT_XY x, MOL("KX"), symbol = None
30 PLOT_XY x, MOL("MgX2"), symbol = None
40 PLOT_XY x, MOL("NaX"), symbol = None
50 PLOT_XY x, MOL("CaX2"), symbol = None
60 PLOT_XY x, MOL("CsX"), symbol = None
  -end
    -active                 true
END
Logged

Jeonghwan Hwang

  • Top Contributor
  • Posts: 77
Re: How can I plot the site contribution of cation exchange model for 1D model
« Reply #2 on: 26/06/20 07:34 »
Dear, Dr. Parkhurst,

Many thanks for your advice.
Now I can make a 1D transport with Cs exchange.

I changed the concentration of Cs and selectivity and found some interesting results.
But I cannot explain about it.

The code is as below;

==========================================================
database c://phreeqc/database/LLNL.dat
 
SOLUTION 0
    temp    23.0
    units moles/l
    Cs 9.17E-05
    K 1.10E-03
    Na 1.60E-05
    Ca 2.10E-06
    Mg 7.10E-06
   
SOLUTION 1-40  Initial solution for column
    temp    23.0
    units moles/l
    Cs 1e-10
    K 1.10E-03
    Na 1.60E-05
    Ca 2.10E-06
    Mg 7.10E-06
END

 EXCHANGE_MASTER_SPECIES
    Z   Z- #FES
    D   D- #TypeII
    X   X- #planar
 
EXCHANGE_SPECIES
    Z- = Z- #FES
    log_k 0.0
    -davies
    Na+ + KZ = NaZ + K+  #FES
    log_k -2.5
    -davies
    K+ + Z- = KZ #FES
    log_k 0.0
    -davies
    Ca+2 + 2KZ = CaZ2 + 2K+  #FES
    log_k -10.7
    -davies
 
    D- = D- #TypeII
    log_k 0.0
    -davies
    Na+ + KD = NaD + K+ #TypeII
    log_k -2.1
    -davies
    K+ + D- = KD #TypeII
    log_k 0.0
    -davies
    Ca+2 + 2KD = CaD2 + 2K+  #TypeII
    log_k -4.6
    -davies
 
    X- = X- #planar
    log_k 0.0
    -davies
    Na+ + KX = NaX + K+ #planar
    log_k -1.0
    -davies
    K+ + X- = KX #planar
    log_k 0.0
    -davies
    Ca+2 + 2KX = CaX2 + 2K+  #planar
    log_k -3.9
    -davies
 
    Cs+ + KZ = CsZ + K+  #FES
    log_k 4.5
    -davies
    Cs+ + KD = CsD + K+  #TypeII
    log_k 1.4
    -davies
    Cs+ + KX = CsX + K+  #planar
    log_k 0.8
    -davies
 end
 
EXCHANGE 1-40
      KZ  9.06E-08
      KD  3.02E-05
      KX  5.97E-05
END

ADVECTION
        -cells           40
        -shifts          500
        -punch_cells     40
        -punch_frequency 1
        -print_cells     40
        -print_frequency 20
PRINT; -reset false; -status false

SELECTED_OUTPUT
        -file            hwang_Parkhurst.txt
        -reset           false
        -step
        -molalities         CaX2 KX NaX MgX2 CsX
        -totals             Cs

USER_PUNCH
  -heading  Pore_vol
  10 PUNCH (STEP_NO + .5) / 40.
 
   
USER_GRAPH 1 Example 11
    -headings               CaX2 KX NaX MgX2 CsX Cs
    -axis_titles            "Cell number" "Molality" ""
    -chart_title            "Using ADVECTION Data Block"
    -axis_scale y_axis      auto auto auto auto log
    -initial_solutions      false
    -connect_simulations    true
    -plot_concentration_vs  x
  -start
10 x = (STEP_NO + 0.5) / cell_no
20 PLOT_XY x, MOL("CaX2"), symbol = None
30 PLOT_XY x, MOL("KX"), symbol = None
40 PLOT_XY x, MOL("NaX"), symbol = None
50 PLOT_XY x, MOL("MgX2"), symbol = None
60 PLOT_XY x, MOL("CsX"), symbol = None
70 PLOT_XY x, TOT("Cs"), symbol = None
80 PUT(1, 1)
  -end
 
    -active                 true
COPY cell 101 1-40
END
=========================================================

The interesting thing is that 'the significant decrease of KX, CsX, NaX and CsX were found at the 3 pore volume step.
Also, there are significant increase of MgX2.

However, I didn't input the selectivity of MgX in my exchange_species.
I find this very interesting, but I think I should be able to interpret it.

Thanks for any advice on this.

Sincerely,

Jeonghwan Hwang

Logged

dlparkhurst

  • Global Moderator
  • *****
  • Posts: 4036
Re: How can I plot the site contribution of cation exchange model for 1D model
« Reply #3 on: 26/06/20 12:03 »
Exchange reactions for X are defined in llnl.dat. Your definitions for NaX, KX, and CaX2 will replace those in the database. The definition for CsX will be added. However, MgX2 (along with several others) are defined in the database and will be used in the calculations.

If you want to use only your definitions, you should use an exchange name other than X.
Logged

Jeonghwan Hwang

  • Top Contributor
  • Posts: 77
Re: How can I plot the site contribution of cation exchange model for 1D model
« Reply #4 on: 27/06/20 04:56 »
Thank you for your advice.
I solved the problem and my model worked better.

Thank you.

Sincerely,

Jeonghwan Hwang
Logged

Jeonghwan Hwang

  • Top Contributor
  • Posts: 77
Re: How can I plot the site contribution of cation exchange model for 1D model
« Reply #5 on: 29/06/20 06:47 »
Hello, can I ask two more question?

1) I want to conduct a model that describes 1) the pulsed flow of Cs-contaminated water and 2) flushed with fresh water.
For this purpose, I made a code as below;
The question is that 'Can I put both simulation results in one output file?'
I can only make two different txt output.

2) The code below describe the outlet concentration of column.
How to calculate the change of total amounts for KZ KQ KD CsZ CsQ CsD Cs in 40 cells (column)?



Thank you for reading,

Sincerely,

Jeonghwan Hwang

===================================================
database c://phreeqc/database/LLNL.dat

#======Initial solution for column=====#
SOLUTION 1-40 
    temp    23.0
    units moles/l
    Cs 1e-10
    K 1.10E-03
    Na 1.60E-05
    Ca 2.10E-06
    Mg 7.10E-06

EXCHANGE_MASTER_SPECIES
    Z   Z- #FES
    D   D- #TypeII
    Q   Q- #planar
 
EXCHANGE_SPECIES
    Z- = Z- #FES
    log_k 0.0
    -davies
    Na+ + KZ = NaZ + K+  #FES
    log_k -2.5
    -davies
    K+ + Z- = KZ #FES
    log_k 0.0
    -davies
    Ca+2 + 2KZ = CaZ2 + 2K+  #FES
    log_k -10.7
    -davies
 
    D- = D- #TypeII
    log_k 0.0
    -davies
    Na+ + KD = NaD + K+ #TypeII
    log_k -2.1
    -davies
    K+ + D- = KD #TypeII
    log_k 0.0
    -davies
    Ca+2 + 2KD = CaD2 + 2K+  #TypeII
    log_k -4.6
    -davies
 
    Q- = Q- #planar
    log_k 0.0
    -davies
    Na+ + KQ = NaQ + K+ #planar
    log_k -1.0
    -davies
    K+ + Q- = KQ #planar
    log_k 0.0
    -davies
    Ca+2 + 2KQ = CaQ2 + 2K+  #planar
    log_k -3.9
    -davies
 
    Cs+ + KZ = CsZ + K+  #FES
    log_k 4.2
    -davies
    Cs+ + KD = CsD + K+  #TypeII
    log_k 1.0
    -davies
    Cs+ + KQ = CsQ + K+  #planar
    log_k 0.5
    -davies
 end
 
EXCHANGE 1-40
      KZ  9.06E-08
      KD  3.02E-05
      KQ  2.72E-04
END
#======================================#

#pulsed inflow of Cs contaminated water#
SOLUTION 0
    temp    23.0
    units moles/l
    Cs 1E-02
    K 1.10E-03
    Na 1.60E-05
    Ca 2.10E-06
    Mg 7.10E-06
   
ADVECTION
        -cells           40
        -shifts          40
        -punch_cells     40
        -punch_frequency 1
        -print_cells     40
        -print_frequency 20
PRINT; -reset false; -status false

SELECTED_OUTPUT
        -file            hwang_Parkhurst_Example.txt
        -reset           false
        -step
        -molalities         KZ KQ KD CsZ CsQ CsD Cs
        -totals             Cs

USER_PUNCH
  10 PUNCH (STEP_NO) / 40.
     
USER_GRAPH 1
    -headings               KZ KQ KD CsZ CsQ CsD Cs
    -axis_titles            "Cell number" "Molality" ""
    -chart_title            "Using ADVECTION Data Block"
    -axis_scale x_axis      auto auto auto auto
    -axis_scale y_axis      auto auto auto auto log
    -initial_solutions      false
    -connect_simulations    true
    -plot_concentration_vs  x   
    -start   
10 x = (STEP_NO) / cell_no
20 PLOT_XY x, MOL("KZ"), symbol = None
30 PLOT_XY x, MOL("KQ"), symbol = None
40 PLOT_XY x, MOL("KD"), symbol = None
50 PLOT_XY x, MOL("CsZ"), symbol = None
60 PLOT_XY x, MOL("CsQ"), symbol = None
70 PLOT_XY x, MOL("CsD"), symbol = None
80 PLOT_XY x, TOT("Cs"), symbol = None
90 PUT(1, 1)
  -end
    -active                 true
COPY cell 101 1-40   
END
#======================================#


#pulsed inflow of no contaminated water#
SOLUTION 0
    temp    23.0
    units moles/l
    Cs 1E-10
    K 1.10E-03
    Na 1.60E-05
    Ca 2.10E-06
    Mg 7.10E-06
   
ADVECTION
        -cells           40
        -shifts          520
        -punch_cells     40
        -punch_frequency 1
        -print_cells     40
        -print_frequency 20
PRINT; -reset false; -status false

SELECTED_OUTPUT
        -file            hwang_Parkhurst_Example1.txt
        -reset           false
        -step
        -molalities         KZ KQ KD CsZ CsQ CsD Cs
        -totals             Cs

USER_PUNCH
  10 PUNCH (STEP_NO + 40) / 40.
     
USER_GRAPH 1
    -headings               KZ KQ KD CsZ CsQ CsD Cs
    -axis_titles            "Cell number" "Molality" ""
    -chart_title            "Using ADVECTION Data Block"
    -axis_scale x_axis      auto auto auto auto
    -axis_scale y_axis      auto auto auto auto log
    -initial_solutions      false
    -connect_simulations    true
    -plot_concentration_vs  x   
    -start   
10 x = (STEP_NO + 40) / cell_no
20 PLOT_XY x, MOL("KZ"), symbol = None
30 PLOT_XY x, MOL("KQ"), symbol = None
40 PLOT_XY x, MOL("KD"), symbol = None
50 PLOT_XY x, MOL("CsZ"), symbol = None
60 PLOT_XY x, MOL("CsQ"), symbol = None
70 PLOT_XY x, MOL("CsD"), symbol = None
80 PLOT_XY x, TOT("Cs"), symbol = None
90 PUT(1, 1)
  -end
    -active                 true
COPY cell 101 1-40   
END   
#======================================#
« Last Edit: 29/06/20 10:13 by Jeonghwan Hwang »
Logged

dlparkhurst

  • Global Moderator
  • *****
  • Posts: 4036
Re: How can I plot the site contribution of cation exchange model for 1D model
« Reply #6 on: 29/06/20 15:20 »
(1) If you do not define the second set of SELECTED_OUTPUT and USER_PUNCH, then all results will go in one selected output file. I have added PRINT; -selected_output false/true to avoid a line in the selected output file for the new SOLUTION 0.

(2) USER_GRAPH 2 shows the cumulative amount of each species in the column.

I have used -time_step to keep track of pore volumes. I arbitrarily used 1 second for the time step, so a pore volume is 40 seconds. -initial_time allows the time to be cumulative in the second ADVECTION simulation.

It is necessary to run USER_GRAPH for each cell to be able to accumulate the amounts of species in each cell, but only cell 40 is graphed.

Your COPY commands did not do anything because there were no definitions for 101; you did not want to reset the column between ADVECTION calculations anyway.

Code: [Select]
EXCHANGE_MASTER_SPECIES
    Z   Z- #FES
    D   D- #TypeII
    Q   Q- #planar
 
EXCHANGE_SPECIES
    Z- = Z- #FES
    log_k 0.0
    -davies
    Na+ + KZ = NaZ + K+  #FES
    log_k -2.5
    -davies
    K+ + Z- = KZ #FES
    log_k 0.0
    -davies
    Ca+2 + 2KZ = CaZ2 + 2K+  #FES
    log_k -10.7
    -davies
 
    D- = D- #TypeII
    log_k 0.0
    -davies
    Na+ + KD = NaD + K+ #TypeII
    log_k -2.1
    -davies
    K+ + D- = KD #TypeII
    log_k 0.0
    -davies
    Ca+2 + 2KD = CaD2 + 2K+  #TypeII
    log_k -4.6
    -davies
 
    Q- = Q- #planar
    log_k 0.0
    -davies
    Na+ + KQ = NaQ + K+ #planar
    log_k -1.0
    -davies
    K+ + Q- = KQ #planar
    log_k 0.0
    -davies
    Ca+2 + 2KQ = CaQ2 + 2K+  #planar
    log_k -3.9
    -davies
 
    Cs+ + KZ = CsZ + K+  #FES
    log_k 4.2
    -davies
    Cs+ + KD = CsD + K+  #TypeII
    log_k 1.0
    -davies
    Cs+ + KQ = CsQ + K+  #planar
    log_k 0.5
    -davies
END
#======Initial solution for column=====#
SOLUTION 1-40
    temp    23.0
    units moles/l
    Cs 1e-10
    K 1.10E-03
    Na 1.60E-05
    Ca 2.10E-06
    Mg 7.10E-06
END
EXCHANGE 1-40
      KZ  9.06E-08
      KD  3.02E-05
      KQ  2.72E-04
END
#======================================#

#pulsed inflow of Cs contaminated water#
SOLUTION 0
    temp    23.0
    units moles/l
    Cs 1E-02
    K 1.10E-03
    Na 1.60E-05
    Ca 2.10E-06
    Mg 7.10E-06
   
ADVECTION
        -time_step       1
        -cells           40
        -shifts          40
        #-punch_cells     40
        -punch_frequency 1

PRINT; -reset false; -status false

SELECTED_OUTPUT 1
        -file            hwang_Parkhurst_Example.txt
        -reset           false
        -step
        -molalities         KZ KQ KD CsZ CsQ CsD Cs
        -totals             Cs

USER_PUNCH 1
-heading Pore_volume
  10 PUNCH TOTAL_TIME / 40
     
USER_GRAPH 1
    -headings               KZ KQ KD CsZ CsQ CsD Cs
    -axis_titles            "Pore volume" "Molality" ""
    -chart_title            "Using ADVECTION Data Block"
    -axis_scale x_axis      auto auto auto auto
    -axis_scale y_axis      auto auto auto auto log
    -initial_solutions      false
    -connect_simulations    true
    -plot_concentration_vs  x   
    -start   
5 IF CELL_NO <> 40 THEN GOTO 100
10 x = TOTAL_TIME / 40
20 PLOT_XY x, MOL("KZ"), symbol = None
30 PLOT_XY x, MOL("KQ"), symbol = None
40 PLOT_XY x, MOL("KD"), symbol = None
50 PLOT_XY x, MOL("CsZ"), symbol = None
60 PLOT_XY x, MOL("CsQ"), symbol = None
70 PLOT_XY x, MOL("CsD"), symbol = None
80 PLOT_XY x, TOT("Cs"), symbol = None
100 REM end of plot
  -end
    -active                 true

USER_GRAPH 2
    -headings               KZ KQ KD CsZ CsQ CsD Cs
    -axis_titles            "Pore volume" "Moles in column" ""
    -chart_title            "Using ADVECTION Data Block"
    -axis_scale x_axis      auto auto auto auto
    -axis_scale y_axis      auto auto auto auto log
    -initial_solutions      false
    -connect_simulations    true
    -plot_concentration_vs  x   
    -start   
10 IF CELL_NO = 1 THEN f = 0 ELSE f = 1
20 KZ = GET(1)*f + MOL("KZ")*TOT("water")
30 KQ = GET(2)*f + MOL("KQ")*TOT("water")
40 KD = GET(3)*f + MOL("KD")*TOT("water")
50 CsZ = GET(4)*f + MOL("CsZ")*TOT("water")
60 CsQ = GET(5)*f + MOL("CsQ")*TOT("water")
70 CsD = GET(6)*f + MOL("CsD")*TOT("water")
80 Cs = GET(7)*f + TOT("Cs")*TOT("water")
120 PUT(KZ,1)
130 PUT(KQ,2)
140 PUT(KD,3)
150 PUT(CsZ,4)
160 PUT(CsQ,5)
170 PUT(CsD,6)
180 PUT(Cs,7)
200 IF CELL_NO <> 40 THEN GOTO 300
210 x = TOTAL_TIME / 40
220 PLOT_XY x, GET(1), symbol = None
230 PLOT_XY x, GET(2), symbol = None
240 PLOT_XY x, GET(3), symbol = None
250 PLOT_XY x, GET(4), symbol = None
260 PLOT_XY x, GET(5), symbol = None
270 PLOT_XY x, GET(6), symbol = None
280 PLOT_XY x, GET(7), symbol = None
300 REM end of plot
  -end
    -active                 true
END
#======================================#

PRINT
-selected_output false
#pulsed inflow of no contaminated water#
SOLUTION 0
    temp    23.0
    units moles/l
    Cs 1E-10
    K 1.10E-03
    Na 1.60E-05
    Ca 2.10E-06
    Mg 7.10E-06
END
PRINT
-selected_output true   
ADVECTION
        -time_step       1
        -initial_time    40
        -cells           40
        -shifts          520
        #-punch_cells     40
        -punch_frequency 1

END 
Logged

  • Print
Pages: [1]   Go Up
« previous next »
  • PhreeqcUsers Discussion Forum »
  • Processes »
  • Reactive transport modelling »
  • How can I plot the site contribution of cation exchange model for 1D model
 

  • SMF 2.0.19 | SMF © 2021, Simple Machines | Terms and Policies
  • XHTML
  • RSS
  • WAP2