So the model would change temperatures based upon user defined heat capacities and the temperature of the reinjected water?
### shematic model of geothermal plant:### depth of geothermal reservoir: 2000 m### length between injection well and production well = 100 m### flow time between injection well and production well = 100 days### pressure 1: pressure at the surface = 1 bar### pressure 2: pressure in the geothermal reservoir = 196 bar### temperature in the geothermal reservoir = 70°C################################## step 3 - injection well ####step 3-a: output heat exchanger = top edge of injection wellSOLUTION 1 temp 27 pH 7.5 pe 4 redox pe units mg/l density 1 C(4) 490 as HCO3 Ca 60 Cl 70 Fe 1 K 8 Mg 35 Na 125 S(6) 101 as SO4 -water 1 # kgREACTION_PRESSURE 1 #= surface pressure 1 #~1 barSAVE SOLUTION 1 SELECTED_OUTPUT 1 -file geothermal_plant.txt -high_precision false -reset true -state false -solution false -distance false -time false -step false -totals S(6) Si -molalities Na+ K+ Ca+2 Mg+2 Cl- -equilibrium_phases Albite Anorthite Quartz -saturation_indices Aragonite Calcite SiO2(a) Quartz Albite Anorthite -inverse_modeling true -active true -user_punch trueUSER_GRAPH 1 -headings Aragonite Calcite Fe(OH)3(a) -axis_titles "part geothermal plant (sim_no) [-]" "SI(mineral_phase) [-]" "" -chart_title "scaling proccesses in a geothermal plant" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 PLOT_XY SIM_NO, SI("Aragonite"), color = blue, symbol = circle, line_width = 020 PLOT_XY SIM_NO, SI("Calcite"), color = green, symbol = diamond, line_width = 030 PLOT_XY SIM_NO, SI("Fe(OH)3(a)"), color = black, symbol = square, line_width = 0 -end -active trueENDTITLE step 3-b: lower edge injection wellUSE SOLUTION 1REACTION_TEMPERATURE 1 #assumption: increase of 1°C due to transport28REACTION_PRESSURE 2 #~196 bar193SAVE SOLUTION 1SELECTED_OUTPUT 1USER_GRAPH 1 -headings Aragonite Calcite Fe(OH)3(a) -start10 PLOT_XY SIM_NO, SI("Aragonite"), color = blue, symbol = circle, Line_width = 020 PLOT_XY SIM_NO, SI("Calcite"), color = green, symbol = diamond, Line_width = 030 PLOT_XY SIM_NO, SI("Fe(OH)3(a)"), color = black, symbol = square, Line_width = 0 -end -active trueEND#######################################step 4 - geothermal reservoir #### aproach: definition of KINETICS and RATES and then definition of TRANSPORT# Assumption: soil is 60% Quarz, 20% Albite and 20% Anorthie in 1 mm spheres (radius 0.5 mm)# Assumption: density of rock and (Quarz, Anorthite and Albite) is 2550 kg/m^3 = 2.55 kg/L# Assumption: pore space [-] = 0.9# GFW Albite 0.262 kg/mol; GFW Anorthite 0.278 kg/mol; GFW Quartz 0.06 kg/mol## Moles of Albite per liter pore space calculation:# Moles of albite, anorthite and qaurtz per liter pore space calculation:# Mass of rock per liter pore space = 0.9*2.55/0.1 = 22.95 kg rock/L pore space# Albite: mass per liter pore space 22.95x0.2 = 4.59 kg Albite/L pore space# Anorthite: mass of per liter pore space 22.95x0.2 = 4.59 kg Anorthite/L pore space# Quartz: mass per liter pore space 22.95x0.6 = 13.77 kg Albite/L pore space# # Albite: moles per liter pore space 4.59/0.262 = 17.5 mol Albite/L pore space# Anorthite: moles per liter pore space 4.59/0.278 = 16.5 mol Anorthite/L pore space# Quartz: moles per liter pore space 13.77/0.06 = 229.19 mol Quartz/L pore space## Specific area calculation:# Albite: Volume of sphere 4/3 x pi x r^3 = 4/3 x pi x 0.001^3 = 5.24e-10 m^3 Albite/sphere# Volume of sphere(Albite) = Volume of sphere(Anorthite) = Volume of sphere(Quartz)## Mass of sphere 2550 x 5.24e-10 = 1.34e-9 kg Albite/sphere# Mass of sphere(Albite) = Mass of sphere(Anorthite) = Mass of sphere(Quartz)## Moles of Albite in sphere 1.34e-9/0.262 = 5.09e-6 mol Albite/sphere# Moles of Anorthite in sphere 1.34e-9/0.278 = 4.80e-6 mol Albite/sphere# Moles of Albite in sphere 1.34e-9/0.278 = 2.22e-5 mol Quartz/sphere## Surface area of one sphere 4 x pi x r^2 = 3.14e-6 m^2/sphere# Specific area of Albite in sphere 3.14e-6/5.09e-9 = 0.62 m^2/mol Albite# Specific area of Anorthite in sphere 3.14e-6/4.80e-6 = 0.65 m^2/mol Anorthite# Specific area of Quartz in sphere 3.14e-6/2.22e-5 = 0.14 m^2/mol AlbiteSOLUTION 0COPY SOLUTION 1 0 # SOLUTION at bottom injection well = initial solution geothermal reservoirSOLUTION 1-100 units mg/l density 1 C(4) 735 as HCO3 Ca 90 Cl 105 Fe 1.5 K 12 Mg 52.5 Na 187.5 S(6) 151.5 as SO4 -water 1 # kgKINETICS 1-100Albite -formula Albite 1 -m 17.5 -m0 17.5 -parms 0.62 -tol 1e-08Anorthite -formula Anorthite 1 -m 16.5 -m0 16.5 -parms 0.65 -tol 1e-08Quartz -formula SiO2 1 -m 229.19 -m0 229.19 -parms 0.14 -tol 1e-08-steps 100 days in 100 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 500RATES 1-100 Albite-start 10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6100 dif_temp = 1/TK - 1/281110 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")120 pk_H = pk_H + e_H * dif_temp130 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)140 pk_H2O = pk_H2O + e_H2O * dif_temp150 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)160 REM rate by OH-170 pk_OH = pk_OH + e_OH * dif_temp180 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH190 pk_CO2 = pk_CO2 + e_CO2 * dif_temp200 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2210 rate = rate_H + rate_H2O + rate_OH + rate_CO2220 rate = rate * Parm(1) * m0 * (m/m0)^0.67 * (1 - SR("Albite"))240 moles = rate * TIME250 SAVE moles260 PUT(rate,1)-end Anorthite-start 10 DATA 6.9, 1.0, 4e-6, 0.4, 500e-6, 0.25, 13.2, 0.14, 0.25, 12.0, 0.25 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6100 dif_temp = 1/TK - 1/281110 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")120 pk_H = pk_H + e_H * dif_temp130 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)140 pk_H2O = pk_H2O + e_H2O * dif_temp150 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)160 REM rate by OH-170 pk_OH = pk_OH + e_OH * dif_temp180 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH190 pk_CO2 = pk_CO2 + e_CO2 * dif_temp200 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2210 rate = rate_H + rate_H2O + rate_OH + rate_CO2220 rate = rate * Parm(1) * m0 * (m/m0)^0.67 * (1 - SR("Anorthite"))240 moles = rate * TIME250 SAVE moles260 PUT(rate,1)-end Quartz-start 1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol 3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) 4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz 5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 3510 dif_temp = 1/TK - 1/29820 pk_w = 13.7 + 4700.4 * dif_temp40 rate = PARM(1) * M0 * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))50 moles = rate * time60 save moles-endREACTION_TEMPERATURE 1-100 #Temperature in the reservoir70REACTION_PRESSURE 1-100 193 #~196 barTRANSPORT -cells 100 # 100 * 1m = distance between production an injection well -shifts 100 -time_step 86400 # seconds (time_step * shifts = flow time) -thermal_diffusion 2 3e-10 -print_cells 50 100 -punch_cells 50 100 -multi_d false -length 100*1SELECTED_OUTPUT 1USER_GRAPH 1 -headings Aragonite Calcite Fe(OH)3(a) -start10 PLOT_XY SIM_NO, SI("Aragonite"), color = blue, symbol = circle, Line_width = 020 PLOT_XY SIM_NO, SI("Calcite"), color = green, symbol = diamond, Line_width = 030 PLOT_XY SIM_NO, SI("Fe(OH)3(a)"), color = black, symbol = square, Line_width = 0 -end -active trueSAVE SOLUTION 100END################################### Solution 100 = Solution at the end of the geothermal reservoir = Solution at the lower edge of production well (step1-a)### step 1 - production well ### TITLE step 1-a: lower edge of the production wellTITLE step 1-b: top edge of the production wellUSE SOLUTION 100REACTION_TEMPERATURE 2 #assumption: decrease of 2°C due to transport68REACTION_PRESSURE 1 1 #~1 barSAVE SOLUTION 1SELECTED_OUTPUT 1USER_GRAPH 1 -headings Aragonite Calcite Fe(OH)3(a) -start10 PLOT_XY SIM_NO, SI("Aragonite"), color = blue, symbol = circle, Line_width = 020 PLOT_XY SIM_NO, SI("Calcite"), color = green, symbol = diamond, Line_width = 030 PLOT_XY SIM_NO, SI("Fe(OH)3(a)"), color = black, symbol = square, Line_width = 0 -end -active trueEND################################## step 2 - heat exchanger ###TITLE step 2-a: input heat exchanger: assumption: input heat exchanger = top edge of production wellTITLE step 2-b: output heat exchanger = step 3aUSE SOLUTION 1REACTION_TEMPERATURE 2 #assumption: decrease of 2°C due to transport27REACTION_PRESSURE 1 1 #~1 barSAVE SOLUTION 1SELECTED_OUTPUT 1USER_GRAPH 1 -headings Aragonite Calcite Fe(OH)3(a) -start10 PLOT_XY SIM_NO, SI("Aragonite"), color = blue, symbol = circle, Line_width = 020 PLOT_XY SIM_NO, SI("Calcite"), color = green, symbol = diamond, Line_width = 030 PLOT_XY SIM_NO, SI("Fe(OH)3(a)"), color = black, symbol = square, Line_width = 0 -end -active trueEND
TITLE output heat exchangerSOLUTION 0 HEAT EXCHANGER temp 27 pH 7.5 pe 4 redox pe units mg/l density 1 C(4) 490 as HCO3 Ca 60 Cl 70 Fe 1 K 8 Mg 35 Na 125 S(6) 101 as SO4 -water 1 # kgREACTION_PRESSURE #= pressure parameter after heat exchanger 1 #~1 barSAVE SOLUTION 0 # safe for later useUSER_PUNCH # writing in the output-file-head pressure10 punch pressureSELECTED_OUTPUT 1 -file plant.txt -high_precision false -reset true -pe false -reaction false -alkalinity false -ionic_strength false -water false -charge_balance false -percent_error false -totals Na -molalities Na+ -inverse_modeling false -active true -user_punch trueUSER_GRAPH 1 -headings Aragonite Calcite Fe(OH)3(a) -start10 PLOT_XY SIM_NO, SI("Aragonite"), color = blue, symbol = circle, Line_width = 020 PLOT_XY SIM_NO, SI("Calcite"), color = green, symbol = diamond, Line_width = 030 PLOT_XY SIM_NO, SI("Fe(OH)3(a)"), color = black, symbol = square, Line_width = 0 -end -active trueEND################################TITLE top edge of injection wellUSE SOLUTION 0REACTION_PRESSURE1SAVE SOLUTION 0USER_PUNCH # writing in the output-file-head pressure10 punch pressureUSER_GRAPH 1 -headings Aragonite Calcite Fe(OH)3(a) -start10 PLOT_XY SIM_NO, SI("Aragonite"), color = blue, symbol = circle, Line_width = 020 PLOT_XY SIM_NO, SI("Calcite"), color = green, symbol = diamond, Line_width = 030 PLOT_XY SIM_NO, SI("Fe(OH)3(a)"), color = black, symbol = square, Line_width = 0 -end -active trueSELECTED_OUTPUT 1; END###############################TITLE lower edge injection wellUSE SOLUTION 0REACTION_TEMPERATURE 28REACTION_PRESSURE193SAVE SOLUTION 0USER_PUNCH # writing in the output-file-head pressure10 punch pressureUSER_GRAPH 1 -headings Aragonite Calcite Fe(OH)3(a) -start10 PLOT_XY SIM_NO, SI("Aragonite"), color = blue, symbol = circle, Line_width = 020 PLOT_XY SIM_NO, SI("Calcite"), color = green, symbol = diamond, Line_width = 030 PLOT_XY SIM_NO, SI("Fe(OH)3(a)"), color = black, symbol = square, Line_width = 0 -end -active trueSELECTED_OUTPUT 1; END################################TITLE Input geothermal reservoir# aproach: definition of KINETICS and RATES and then definition of TRANSPORT# Assumption: soil is 60% Quarz, 20% Albite and 20% Anorthie in 1 mm spheres (radius 0.5 mm)# Assumption: density of rock and (Quarz, Anorthite and Albite) is 2550 kg/m^3 = 2.55 kg/L# Assumption: pore space [-] = 0.9# GFW Albite 0.262 kg/mol; GFW Anorthite 0.278 kg/mol; GFW Quartz 0.06 kg/mol## Moles of Albite per liter pore space calculation:# Moles of albite, anorthite and qaurtz per liter pore space calculation:# Mass of rock per liter pore space = 0.9*2.55/0.1 = 22.95 kg rock/L pore space# Albite: mass per liter pore space 22.95x0.2 = 4.59 kg Albite/L pore space# Anorthite: mass of per liter pore space 22.95x0.2 = 4.59 kg Anorthite/L pore space# Quartz: mass per liter pore space 22.95x0.6 = 13.77 kg Albite/L pore space# # Albite: moles per liter pore space 4.59/0.262 = 17.5 mol Albite/L pore space# Anorthite: moles per liter pore space 4.59/0.278 = 16.5 mol Anorthite/L pore space# Quartz: moles per liter pore space 13.77/0.06 = 229.19 mol Quartz/L pore space## Specific area calculation:# Albite: Volume of sphere 4/3 x pi x r^3 = 4/3 x pi x 0.001^3 = 5.24e-10 m^3 Albite/sphere# Volume of sphere(Albite) = Volume of sphere(Anorthite) = Volume of sphere(Quartz)## Mass of sphere 2550 x 5.24e-10 = 1.34e-9 kg Albite/sphere# Mass of sphere(Albite) = Mass of sphere(Anorthite) = Mass of sphere(Quartz)## Moles of Albite in sphere 1.34e-9/0.262 = 5.09e-6 mol Albite/sphere# Moles of Anorthite in sphere 1.34e-9/0.278 = 4.80e-6 mol Albite/sphere# Moles of Albite in sphere 1.34e-9/0.278 = 2.22e-5 mol Quartz/sphere## Surface area of one sphere 4 x pi x r^2 = 3.14e-6 m^2/sphere# Specific area of Albite in sphere 3.14e-6/5.09e-9 = 0.62 m^2/mol Albite# Specific area of Anorthite in sphere 3.14e-6/4.80e-6 = 0.65 m^2/mol Anorthite# Specific area of Quartz in sphere 3.14e-6/2.22e-5 = 0.14 m^2/mol AlbiteUSE SOLUTION 0SOLUTION 1-1000 units mg/l density 1 C(4) 735 as HCO3 Ca 90 Cl 105 Fe 1.5 K 12 Mg 52.5 Na 187.5 S(6) 151.5 as SO4 -water 1 # kgKINETICS 1-1000Albite -formula Albite 1 -m 17.5 -m0 17.5 -parms 0.62 -tol 1e-08Anorthite -formula Anorthite 1 -m 16.5 -m0 16.5 -parms 0.65 -tol 1e-08Quartz -formula SiO2 1 -m 229.19 -m0 229.19 -parms 0.14 -tol 1e-08-steps 8640000 in 1000 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 500-cvode true -cvode_steps 100-cvode_order 5RATES Albite-start 10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6100 dif_temp = 1/TK - 1/281110 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")120 pk_H = pk_H + e_H * dif_temp130 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)140 pk_H2O = pk_H2O + e_H2O * dif_temp150 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)160 REM rate by OH-170 pk_OH = pk_OH + e_OH * dif_temp180 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH190 pk_CO2 = pk_CO2 + e_CO2 * dif_temp200 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2210 rate = rate_H + rate_H2O + rate_OH + rate_CO2220 rate = rate * Parm(1) * m0 * (m/m0)^0.67 * (1 - SR("Albite"))240 moles = rate * TIME250 SAVE moles260 PUT(rate,1)-end Anorthite-start 10 DATA 6.9, 1.0, 4e-6, 0.4, 500e-6, 0.25, 13.2, 0.14, 0.25, 12.0, 0.25 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6100 dif_temp = 1/TK - 1/281110 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")120 pk_H = pk_H + e_H * dif_temp130 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)140 pk_H2O = pk_H2O + e_H2O * dif_temp150 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)160 REM rate by OH-170 pk_OH = pk_OH + e_OH * dif_temp180 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH190 pk_CO2 = pk_CO2 + e_CO2 * dif_temp200 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2210 rate = rate_H + rate_H2O + rate_OH + rate_CO2220 rate = rate * Parm(1) * m0 * (m/m0)^0.67 * (1 - SR("Anorthite"))240 moles = rate * TIME250 SAVE moles260 PUT(rate,1)-end Quartz-start 1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol 3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) 4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz 5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 3510 dif_temp = 1/TK - 1/29820 pk_w = 13.7 + 4700.4 * dif_temp40 rate = PARM(1) * M0 * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))50 moles = rate * time60 save moles-endREACTION_TEMPERATURE 1-1000 #Temperature in the reservoir70REACTION_PRESSURE 1-1000 193 #~196 bar# va = time step * shifts = 86400 * 1000 = 86400000 / 1000 m = 1.16E-4 m/sTRANSPORT 1-1000 -cells 1000 -shifts 1000 # 1000 shifts to the next cell -time_step 8640 # time for each advactive step -thermal_diffusion 2 3e-10 -print_cells 1-1000 -punch_cells 1-1000 -multi_d false-length 1000*1SAVE SOLUTION 1000USER_PUNCH # WRITING PRESSURE TO OUTOUT-head pressure10 punch pressureUSER_GRAPH 1 -headings Aragonite Calcite Fe(OH)3(a) -start10 PLOT_XY SIM_NO, SI("Aragonite"), color = blue, symbol = circle, Line_width = 020 PLOT_XY SIM_NO, SI("Calcite"), color = green, symbol = diamond, Line_width = 030 PLOT_XY SIM_NO, SI("Fe(OH)3(a)"), color = black, symbol = square, Line_width = 0 -end -active trueSELECTED_OUTPUT 1; END###################################TITLE Lower edge of production wellUSE SOLUTION 1000 # last solution of geothermal reservoirREACTION_PRESSURE # PRESSURE AT THE lower-LEVEL OF INJECTION WELL193SAVE SOLUTION 1000 # SAVE FOR LATER USEUSER_PUNCH # WRITING PRESSURE TO OUTOUT-head pressure10 punch pressureUSER_GRAPH 1 -headings Aragonite Calcite Fe(OH)3(a) -start10 PLOT_XY SIM_NO, SI("Aragonite"), color = blue, symbol = circle, Line_width = 020 PLOT_XY SIM_NO, SI("Calcite"), color = green, symbol = diamond, Line_width = 030 PLOT_XY SIM_NO, SI("Fe(OH)3(a)"), color = black, symbol = square, Line_width = 0 -end -active trueSELECTED_OUTPUT 1; END###################################TITLE top edge of production wellUSE SOLUTION 1000 # last solution of geothermal reservoirREACTION_TEMPERATURE # cooling due to transport to the surface68REACTION_PRESSURE # PRESSURE AT THE lower-LEVEL OF INJECTION WELL1SAVE SOLUTION 1000 # SAVE FOR LATER USEUSER_PUNCH # WRITING PRESSURE TO OUTOUT-head pressure10 punch pressureUSER_GRAPH 1 -headings Aragonite Calcite Fe(OH)3(a) -start10 PLOT_XY SIM_NO, SI("Aragonite"), color = blue, symbol = circle, Line_width = 020 PLOT_XY SIM_NO, SI("Calcite"), color = green, symbol = diamond, Line_width = 030 PLOT_XY SIM_NO, SI("Fe(OH)3(a)"), color = black, symbol = square, Line_width = 0 -end -active trueSELECTED_OUTPUT 1; END###################################TITLE input heat exchangerUSE SOLUTION 1000 # last solution of geothermal reservoirREACTION_TEMPERATURE # cooling due to transport to the surface68REACTION_PRESSURE # PRESSURE AT THE lower-LEVEL OF INJECTION WELL1SAVE SOLUTION 1000 # SAVE FOR LATER USEUSER_PUNCH # WRITING PRESSURE TO OUTOUT-head pressure10 punch pressureUSER_GRAPH 1 -headings Aragonite Calcite Fe(OH)3(a) -start10 PLOT_XY SIM_NO, SI("Aragonite"), color = blue, symbol = circle, Line_width = 020 PLOT_XY SIM_NO, SI("Calcite"), color = green, symbol = diamond, Line_width = 030 PLOT_XY SIM_NO, SI("Fe(OH)3(a)"), color = black, symbol = square, Line_width = 0 -end -active trueSELECTED_OUTPUT 1; END###################################TITLE 2nd circle output heat exchangerUSE SOLUTION 1000 # last solution of geothermal reservoirREACTION_TEMPERATURE # cooling due to transport to the surface27REACTION_PRESSURE # PRESSURE AT THE lower-LEVEL OF INJECTION WELL1SAVE SOLUTION 1000 # SAVE FOR LATER USEUSER_PUNCH # WRITING PRESSURE TO OUTOUT-head pressure10 punch pressureUSER_GRAPH 1 -headings Aragonite Calcite Fe(OH)3(a) -start10 PLOT_XY SIM_NO, SI("Aragonite"), color = blue, symbol = circle, Line_width = 020 PLOT_XY SIM_NO, SI("Calcite"), color = green, symbol = diamond, Line_width = 030 PLOT_XY SIM_NO, SI("Fe(OH)3(a)"), color = black, symbol = square, Line_width = 0 -end -active trueSELECTED_OUTPUT 1; END
SOLUTION 1ENDCOPY solution 1 0ENDUSE solution 0REACTION 1NaCl 11 mmolEND