Processes > Mixing
PHREEQC convergence problem
(1/1)
lsantosgeoquimica:
I have come across a PHREEQC convergence problem for which I couldn't find a cure. I am not sure, maybe there is something wrong with my input or my definitions in the database. Could you, if you have the time, have a quick look at it ?
TITLE ---------------------------------------------------------------------
Dados B1+B2+CaCO3
data output in mg/L
Lago formado por mistura simples
MIXING WITH EQUILIBRIUM PHASES
---------------------------------------------------------------------
SELECTED_OUTPUT
-file dam5.sel
-selected_out VERDADEIRO
-user_punch VERDADEIRO
-solution VERDADEIRO
-simulation VERDADEIRO
-state FALSO
-distance FALSO
-time FALSO
-step FALSO
-reaction FALSO
-water FALSO
-charge_balance VERDADEIRO
-percent_error VERDADEIRO
-ionic_strength VERDADEIRO
-molalities Hfo_sHAsO4- Hfo_sOCu+ Hfo_wHAsO4- Hfo_wOCu+
# -totals Alkalinity Cl S(6) Al As B Ba Ca Cd Co # replaced by
# Cu Fe K Li Mg Mn Mo Na Ni Pb Sb Se Si # USER_PUNCH
# Sn Sr U F V Zn N(3) N(5)
-saturation_indices
Al(OH)3(am) AlOHSO4 Al4(OH)10SO4 # Al
Otavite # Cd
Brochantite Cu(OH)2 Malachite Azurite Chalcanthite # Cu
Ferrihydrite Siderite Melanterite Schwertmannite # Fe
Anglesite # Pb
Rhodochrosite Birnessite Manganite # Mn
Ni(OH)2 # Ni
Zn(OH)2(am) Smithsonite Goslarite # Zn
Gypsum
SiO2(am-ppt)
H-Jarosite K-Jarosite Na-Jarosite
Calcite Dolomite(ordered) Magnesite
Barite Witherite # Ba
Fluorite
CoCO3 celestite cerrusite
CO2(g) O2(g)
-equilibrium_phases
Al(OH)3(am) AlOHSO4 Al4(OH)10SO4 # Al
Otavite # Cd
Brochantite Cu(OH)2 Malachite Azurite Chalcanthite # Cu
Ferrihydrite Siderite Melanterite Schwertmannite # Fe
Anglesite # Pb
Rhodochrosite Birnessite Manganite # Mn
Ni(OH)2 # Ni
Zn(OH)2(am) Smithsonite Goslarite # Zn
Gypsum
SiO2(am-ppt)
H-Jarosite K-Jarosite Na-Jarosite
Calcite Dolomite(ordered) Magnesite
Barite Witherite # Ba
Fluorite
CoCO3 celestite cerrusite
CO2(g) O2(g)
USER_PUNCH # converts to mg/L (moles*gfw*1000)
-headings pH Alkalinity Cl S(6) Al As B Ba Ca Cd Co Cu Fe K Li Mg Mn Mo Na Ni Pb Sb Se Si Sn Sr U F V Zn N(3) N(5) TDS
-start
10 PUNCH -LA("H+")
20 PUNCH ALK*50.04*1000
30 PUNCH TOT("Cl")*35.45*1000
40 PUNCH TOT("S(6)")*96.06*1000
50 PUNCH TOT("Al")*26.982*1000
60 PUNCH TOT("As")*74.922*1000
70 PUNCH TOT("B")*10.81*1000
80 PUNCH TOT("Ba")*137.34*1000
90 PUNCH TOT("Ca")*40.08*1000
100 PUNCH TOT("Cd")*112.4*1000
110 PUNCH TOT("Co")*58.93*1000
120 PUNCH TOT("Cu")*63.546*1000
130 PUNCH TOT("Fe")*55.85*1000
140 PUNCH TOT("K")*39.10*1000
150 PUNCH TOT("Li")*6.94*1000
160 PUNCH TOT("Mg")*24.31*1000
170 PUNCH TOT("Mn")*54.94*1000
180 PUNCH TOT("Mo")*95.94*1000
190 PUNCH TOT("Na")*22.99*1000
200 PUNCH TOT("Ni")*58.70*1000
210 PUNCH TOT("Pb")*207.19*1000
220 PUNCH TOT("Sb")*121.75*1000
230 PUNCH TOT("Se")*78.96*1000
240 PUNCH TOT("Si")*28.09*1000
250 PUNCH TOT("Sn")*118.69*1000
260 PUNCH TOT("Sr")*87.62*1000
270 PUNCH TOT("U")*238.08*1000
280 PUNCH TOT("F")*41.98*1000
290 PUNCH TOT("V")*50.94*1001
300 PUNCH TOT("Zn")*65.37*1002
310 PUNCH TOT("N(5)")*62.00*1003
320 PUNCH TOT("N(3)")*45.99*1003
330 PUNCH ALK*50.04*1000+TOT("Cl")*35.45*1000+TOT("S(6)")*96.06*1000+TOT("Al")*26.982*1000+TOT("As")*74.922*1000+TOT("B")*10.81*1000+TOT("Ba")*137.34*1000+TOT("Ca")*40.08*1000+TOT("Cd")*112.4*1000+TOT("Co")*58.93*1000+TOT("Cu")*63.546*1000+TOT("Fe")*55.85*1000+TOT("K")*39.10*1000+TOT("Li")*6.94*1000+TOT("Mg")*24.31*1000+TOT("Mn")*54.94*1000+TOT("Mo")*95.94*1000+TOT("Na")*22.99*1000+TOT("Ni")*58.70*1000+TOT("Pb")*207.19*1000+TOT("Sb")*121.75*1000+TOT("Se")*78.96*1000+TOT("Si")*28.09*1000+TOT("Sn")*118.69*1000+TOT("Sr")*87.62*1000+TOT("U")*238.08*1000+TOT("F")*41.98*1000+TOT("V")*50.94*1001+TOT("Zn")*65.37*1002+TOT("N(5)")*62.00*1003+TOT("N(3)")*45.99*1003
-end
PHASES
# pH_Fix # allows fixing pH as -pH by titration by HCl or NaOH
# H+ = H+
# log_k 0.0
#
# pe_Fix
# e- = e-
# log_k 0.0
#
Schwertmannite # Yu et al(1999) - CGA
Fe8O8(OH)6(SO4) + 22H+ = 8Fe+3 + SO4-2 + 14H2O
log_k -10.5
SOLUTION_SPREAD
-temp 25
-units mg/L
description pH pe Alkalinity Cl S(6) Al As B Ba Ca Cd Co Cu Fe K Li Mg
charge as SO4
01-B2 6.1 40 272 30.5 1368 0.841 0.93 0 0 191 0.012 0 0.68 0.57 213 0
Mn Mo Na Ni Pb Sb Se Si Sn Sr U F V Zn N(5) N(3)
89.8 0.86 0 312 0.1361 0.16 0 0 0 0 0 0 1 0 0.15 0 0
EQUILIBRIUM_PHASE 1 allows precipitation of oversaturated mineral phases
# pH_Fix -4,41 CaCO3 10,00 # matches to observed
# pe_Fix -9,00 O2(g) 10,00 # matches pe to observed
CO2(g) -3,50 10,00 # Atmospheric partial pressure
Al(OH)3(am) 0,00 0,00 # Al; Gibbsite ?
AlOHSO4 0,00 0,00 # Al; Jurbanite
Al4(OH)10SO4 0,00 0,00 # Al; Aluminite
Alunite 0,00 0,00
barite 10,00 0,00 # BaSO4
Witherite 0,00 0,00 # Ba
Fluorite 10,00 0,00 # CaF2
Calcite 0,00 0,00 # CaCO3
Gypsum 10,00 0,00 # CaSO4:H2O
Dolomite(ordered) 0,00 0,00 # (Mg,Ca)CO3
Otavite 0,00 0,00 # Cd
CoCO3 0,00 0,00 # CoCO3
Brochantite 0,00 0,00 # Cu
Cu(OH)2 0,00 0,00 # Cu
Malachite 0,00 0,00 # Cu "CO3"
Azurite 0,00 0,00 # Cu "CO3"
Chalcanthite 0,00 0,00 # Cu "SO4"
Schwertmannite 0,00 0,00 # Fe
Ferrihydrite 10,00 0,00 # Fe, set to match field observations
H-Jarosite 0,00 0,00 # Fe
K-Jarosite 10,00 0,00 # Fe
Na-Jarosite 10,00 0,00 # Fe
Siderite 0,00 0,00 # Fe
Magnesite 0,00 0,00 # Fe
Melanterite 0,00 0,00 # Fe
Rhodochrosite 0,00 0,00 # MnCO3
Birnessite 0,00 0,00 # (Na,Ca)0.5Mn2=4:1.5H2O (soil mineral)
Manganite 0,00 0,00
Ni(OH)2 0,00 0,00
Anglesite 0,00 0,00 # PbSO4
cerrusite 0,00 0,00 # PbCO3
Chalcedony 0,00 0,00 # SiO2
# SiO2(am-ppt) 0,00 0,00 # SiO2
Celestite 0,00 0,00 # SrSO4
Smithsonite 0,00 0,00 # Zn
Zn(OH)2(am) 0,00 0,00 # Zn
Goslarite 0,00 0,00 # Zn
# -------- defining Hfo surfaces
SURFACE 1-2 standard Hfo from Dzombak and Morel (1990)
Hfo_w Ferrihydrite equilibrium_phase 0,200 53300
Hfo_s Ferrihydrite equilibrium_phase 0,005
# (1) ----------- mixing of industrial inflows as is
USE EQUILIBRIUM_PHASES 1
USE SURFACE 1
SAVE solution 1
END
dlparkhurst:
First, the tabs in SOLUTION_SPREAD seem not to be preserved in the posts, so it is easier if you use SOLUTION definitions.
I think the problem may be the pe of 40. This is definitely out of the range of possibility (well outside the stability field of water).
Not sure I translated everything correctly, but here is a reformulated version of your definition (without nonessential definitions). The other change is to use Hfo_wOH and Hfo_sOH; you should use the charge-balanced OH form when associating a surface with a mineral.
This runs (with some warnings because there is no barium in the system, for example). Check if it is the same as your definitions.
SOLUTION 1 01-B2
temp 25
pH 6.1
pe 4
redox pe
units mg/l
density 1
Al 0.841
Alkalinity 272
As 0.93
B 0
Ba 0
Ca 191
Cd 0.012
Cl 30.5
Co 0
Cu 0.68
F 1
Fe 0.57
K 213
Li 0
Mg 89.8
Mn 0.86
Mo 0
N(3) 0
N(5) 0
Na 312
Ni 0.1361
Pb 0.16
S(6) 1368 charge
Sb 0
Se 0
Si 0
Sn 0
Sr 0
U 0
V 0
Zn 0.15
-water 1 # kg
EQUILIBRIUM_PHASES 1 allows precipitation of oversaturated mineral phases
Al(OH)3(am) 0 0
Al4(OH)10SO4 0 0
AlOHSO4 0 0
Alunite 0 0
Anglesite 0 0
Azurite 0 0
Birnessite 0 0
Brochantite 0 0
CO2(g) -3.5 10
Calcite 0 0
Celestite 0 0
Chalcanthite 0 0
Chalcedony 0 0
CoCO3 0 0
Cu(OH)2 0 0
Dolomite(ordered) 0 0
Ferrihydrite 10 0
Fluorite 10 0
Goslarite 0 0
Gypsum 10 0
H-Jarosite 0 0
K-Jarosite 10 0
Magnesite 0 0
Malachite 0 0
Manganite 0 0
Melanterite 0 0
Na-Jarosite 10 0
Ni(OH)2 0 0
Otavite 0 0
Rhodochrosite 0 0
Schwertmannite 0 0
Siderite 0 0
Smithsonite 0 0
Witherite 0 0
Zn(OH)2(am) 0 0
barite 10 0
cerrusite 0 0
SURFACE 1-2 standard Hfo from Dzombak and Morel (1990)
Hfo_sOH Ferrihydrite equilibrium_phase 0.005 53300
Hfo_wOH Ferrihydrite equilibrium_phase 0.2
USE equilibrium_phases 1
USE surface 1
SAVE solution 1
END
Navigation
[0] Message Index
Go to full version