Registrations currently disabled due to excessive spam. Please email phreeqcusers at gmail.com to request an account.
Welcome
Guest
Forum Home
Login
Register
PhreeqcUsers Discussion Forum
»
Processes
»
Dissolution and precipitation
»
Gas content deep water
« previous
next »
Print
Pages: [
1
]
Go Down
Author
Topic: Gas content deep water (Read 3693 times)
Hydroman
Top Contributor
Posts: 25
Gas content deep water
«
on:
15/02/16 11:18 »
I like to model the effect of pressure and temperature on the gas solubility in geothermal plants. On the hand I have got a deep water analyse and on the other hand I have knowledge about the gas-content in the water.
The gas content in the deep water is: 10%
CO2 = 94 Vol-%
CH4 = 3%
N2 = 3%
My question is: How can I include the dissolved gas-phases (gas content) in my code?
Hint: Solution at the end.
Is use the pitzer-database and the "gebo-database"
TITLE "gebo"-Datensatz
#"gebo"-database must be used in combination with "pitzer.dat"
#The inserted data are taken from literature and various thermodynamic databases.
#The references of the data are given behind their input.
#THE USER IS RESPONSIBLE FOR THE RESULTS OF MODELLING!
#Select temperature of Pitzer parameter lamda.
#T and p dependence can be considered by adaptation of log k values.
#Systems/waters with different temperatures and pressures must be treated seperately.
SOLUTION_MASTER_SPECIES
Fe Fe+2 0.0 Fe 55.847
Fe(+2) Fe+2 0.0 Fe
Fe(+3) Fe+3 0.0 Fe
S(-2) HS- 1.0 S
N NO3- 0.0 N 14.0067
N(+5) NO3- 0.0 NO3
N(+3) NO2- 0.0 NO2
N(0) N2 0.0 N
N(-3) NH4+ 0.0 NH4
C(-4) CH4 0.0 CH4
Si SiO2 0.0 Si 28.0855
Zn Zn+2 0.0 Zn 65.37
Pb Pb+2 0.0 Pb 207.20
Al Al+3 0.0 Al 26.9815
SOLUTION_SPECIES
H2O = OH- + H+ #from phreeqc.dat
log_k -13.998
delta_h 13.345 kcal
-analytic -283.971 -0.05069842 13323.0 102.24447 -1119669.0
-dw 5.27e-9
2 H2O = O2 + 4 H+ + 4 e- #from phreeqc.dat
log_k -86.08
delta_h 134.79 kcal
-dw 2.35e-9
2 H+ + 2 e- = H2 #from phreeqc.dat
log_k -3.15
delta_h -1.759 kcal
-dw 5.1e-9
Fe+2 = Fe+3 + e- #from phreeqc.dat
log_k -13.02
delta_h 9.680 kcal
-gamma 9.0 0.0
Fe+3 + H2O = FeOH+2 + H+ #from phreeqc.dat
log_k -2.19
delta_h 10.4 kcal
Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ #from phreeqc.dat
log_k -5.67
delta_h 17.1 kcal
Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ #from phreeqc.dat
log_k -12.56
delta_h 24.8 kcal
Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ #from phreeqc.dat
log_k -21.6
delta_h 31.9 kcal
2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ #from phreeqc.dat
log_k -2.95
delta_h 13.5 kcal
3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ #from phreeqc.dat
log_k -6.3
delta_h 14.3 kcal
Fe+3 + Cl- = FeCl+2 #from phreeqc.dat
log_k 1.48
delta_h 5.6 kcal
Fe+3 + 2 Cl- = FeCl2+ #from phreeqc.dat
log_k 2.13
Fe+3 + 3 Cl- = FeCl3 #from phreeqc.dat
log_k 1.13
Fe+3 + SO4-2 = FeSO4+ #from phreeqc.dat
log_k 4.04
delta_h 3.91 kcal
Fe+3 + HSO4- = FeHSO4+2 #from phreeqc.dat
log_k 2.48
Fe+3 + 2 SO4-2 = Fe(SO4)2- #from phreeqc.dat
log_k 5.38
delta_h 4.60 kcal
SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O #from phreeqc.dat
log_k 33.65
delta_h -60.140 kcal
-gamma 3.5 0.0
HS- + H+ = H2S #from phreeqc.dat
log_k 6.994
delta_h -5.3 kcal
-analytical -11.17 0.02386 3279.0
HS- = S-2 + H+ #from phreeqc.dat
log_k -12.918
delta_h 12.1 kcal
-gamma 5.0 0.0
NH4+ = NH4+
log_k 0.0
-gamma 2.5 0.0
NO3- = NO3-
log_k 0.0
-gamma 3.0 0.0
NO3- + 2 H+ + 2 e- = NO2- + H2O #from phreeqc.dat
log_k 28.570
delta_h -43.760 kcal
-gamma 3.0 0.0
2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O #from phreeqc.dat
log_k 207.08
delta_h -312.130 kcal
NH4+ = NH3 + H+ #from phreeqc.dat
log_k -9.252
delta_h 12.48 kcal
-analytic 0.6322 -0.001225 -2835.76
NO3- + 10H+ + 8e- = NH4+ + 3H2O #from wateq4f.dat
log_k 119.077
delta_h -187.055 kcal
CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O #from wateq4f.dat
log_k 41.071
delta_h -61.039 kcal
SiO2 = SiO2
log_k 0.000
Zn+2 = Zn+2 #from phreeqc.dat
log_k 0.0
-gamma 5.0 0.0
Zn+2 + H2O = ZnOH+ + H+ #from phreeqc.dat
log_k -8.96
delta_h 13.4 kcal
Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ #from phreeqc.dat
log_k -16.9
Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ #from phreeqc.dat
log_k -28.4
Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ #from phreeqc.dat
log_k -41.2
Zn+2 + Cl- = ZnCl+ #from phreeqc.dat
log_k 0.43
delta_h 7.79 kcal
Zn+2 + 2 Cl- = ZnCl2 #from phreeqc.dat
log_k 0.45
delta_h 8.5 kcal
Zn+2 + 3Cl- = ZnCl3- #from phreeqc.dat
log_k 0.5
delta_h 9.56 kcal
Zn+2 + 4Cl- = ZnCl4-2 #from phreeqc.dat
log_k 0.2
delta_h 10.96 kcal
Zn+2 + CO3-2 = ZnCO3 #from phreeqc.dat
log_k 5.3
Zn+2 + 2CO3-2 = Zn(CO3)2-2 #from phreeqc.dat
log_k 9.63
Zn+2 + HCO3- = ZnHCO3+ #from phreeqc.dat
log_k 2.1
Zn+2 + SO4-2 = ZnSO4 #from phreeqc.dat
log_k 2.37
delta_h 1.36 kcal
Zn+2 + 2SO4-2 = Zn(SO4)2-2 #from phreeqc.dat
log_k 3.28
Pb+2 = Pb+2
log_k 0.0
1.0000 Pb++ + 1.0000 HCO3- = PbCO3 +1.0000 H+ #from llnl.dat
-llnl_gamma 3.0
log_k -3.7488
-delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3
# Enthalpy of formation: -0 kcal/mol
1.0000 Pb++ + 1.0000 Cl- = PbCl+ #from llnl.dat
-llnl_gamma 4.0
log_k +1.4374
-delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+
# Enthalpy of formation: -38.63 kcal/mol
-analytic 1.1948e+002 4.3527e-002 -2.7666e+003 -4.9190e+001 -4.3206e+001
# -Range: 0-300
2.0000 Cl- + 1.0000 Pb++ = PbCl2 #from llnl.dat
-llnl_gamma 3.0
log_k +2.0026
-delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2
# Enthalpy of formation: -77.7 kcal/mol
-analytic 2.2537e+002 7.7574e-002 -5.5112e+003 -9.2131e+001 -8.6064e+001
# -Range: 0-300
3.0000 Cl- + 1.0000 Pb++ = PbCl3- #from llnl.dat
-llnl_gamma 4.0
log_k +1.6881
-delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3-
# Enthalpy of formation: -117.7 kcal/mol
-analytic 2.5254e+002 8.9159e-002 -6.0116e+003 -1.0395e+002 -9.3880e+001
# -Range: 0-300
4.0000 Cl- + 1.0000 Pb++ = PbCl4-- #from llnl.dat
-llnl_gamma 4.0
log_k +1.4909
-delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2
# Enthalpy of formation: -161.23 kcal/mol
-analytic 1.4048e+002 7.6332e-002 -1.1507e+003 -6.3786e+001 -1.7997e+001
# -Range: 0-300
Al+3 = Al+3
log_k 0.000
Al+3 + H2O = AlOH+2 + H+ #from wateq4f.dat
log_k -5.0
delta_h 11.49 kcal
-analytical -38.253 0.0 -656.27 14.327 0.0
Al+3 + 2H2O = Al(OH)2+ + 2H+ #from wateq4f.dat
log_k -10.1
delta_h 26.9 kcal
-analytical 88.5 0.0 -9391.6 -27.121 0.0
Al+3 + 3H2O = Al(OH)3 + 3H+ #from wateq4f.dat
log_k -16.9
delta_h 39.89 kcal
-analytical 226.374 0.0 -18247.8 -73.597 0.0
Al+3 + 4H2O = Al(OH)4- + 4H+ #from wateq4f.dat
log_k -22.7
delta_h 42.3 kcal
-analytical 51.578 0.0 -11168.9 -14.865 0.0
Na+ + H2O = NaOH + H+ #from wateq4f.dat
log_k -14.18
Na+ + CO3-2 = NaCO3- #from wateq4f.dat
log_k 1.27
delta_h 8.910 kcal
Na+ + HCO3- = NaHCO3 #from wateq4f.dat
log_k -0.25
Na+ + SO4-2 = NaSO4- #from wateq4f.dat
log_k 0.7
delta_h 1.120 kcal
Ca+2 + H2O = CaOH+ + H+ #from wateq4f.dat
log_k -12.78
delta_h 15.419 kcal #no Ca data, analog Mg
Cl- + Ca+2 = CaCl+ #from llnl.dat
-llnl_gamma 4.0
log_k -0.6956
-delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+
# Enthalpy of formation: -169.25 kcal/mol
-analytic 8.1498e+001 3.8387e-002 -1.3763e+003 -3.5968e+001 -2.1501e+001
# -Range: 0-300
2Cl- + Ca+2 = CaCl2 #from llnl.dat
-llnl_gamma 3.0
log_k -0.6436
-delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2
# Enthalpy of formation: -211.06 kcal/mol
-analytic 1.8178e+002 7.6910e-002 -3.1088e+003 -7.8760e+001 -4.8563e+001
# -Range: 0-300
Ba+2 + SO4-2 = BaSO4 #from wateq4f.dat
log_k 2.7
Cl- + Ba+2 = BaCl+ #from llnl.dat analogue Ca+2
-llnl_gamma 4.0
log_k -0.6956
-delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+
# Enthalpy of formation: -169.25 kcal/mol
-analytic 8.1498e+001 3.8387e-002 -1.3763e+003 -3.5968e+001 -2.1501e+001
# -Range: 0-300
2Cl- + Ba+2 = BaCl2 #from llnl.dat analogue Ca+2
-llnl_gamma 3.0
log_k -0.6436
-delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2
# Enthalpy of formation: -211.06 kcal/mol
-analytic 1.8178e+002 7.6910e-002 -3.1088e+003 -7.8760e+001 -4.8563e+001
# -Range: 0-300
PHASES
Siderite #from phreeqc.dat
FeCO3 = Fe+2 + CO3-2
log_k -10.89
delta_h -2.480 kcal
Hematite #from wateq4f.dat
Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
log_k -4.008
delta_h -30.845 kcal
Goethite #from wateq4f.dat
FeOOH + 3 H+ = Fe+3 + 2 H2O
log_k -1.0
delta_h -14.48 kcal
Fe(OH)3(a) #from wateq4f.dat
Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
log_k 4.891
Pyrite #from wateq4f.dat
FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS-
log_k -18.479
delta_h 11.300 kcal
FeS(ppt) #from wateq4f.dat
FeS + H+ = Fe+2 + HS-
log_k -3.915
Pyrrhotite #from llnl.dat
FeS + H+ = Fe+2 + HS-
log_k -3.7193
-analytic -1.5785e+002 -5.2258e-002 3.9711e+003 6.3195e+001 6.2012e+001
# -Range: 0-300
Magnetite #from llnl.dat
Fe3O4 +8.0000 H+ = + 1.0000 Fe+2 + 2.0000 Fe+3 + 4.0000 H2O
log_k 10.4724
-analytic -3.0510e+002 -7.9919e-002 1.8709e+004 1.1178e+002 2.9203e+002
# -Range: 0-300
Mackinawite #from wateq4f.dat
FeS + H+ = Fe+2 + HS-
log_k -4.648
FeMetal #(Stumm & Morgan, 1981)
Fe = Fe+2 + 2e-
log_k 14.9
Sulfur #from wateq4f.dat
S + 2H+ + 2e- = H2S
log_k 4.882
delta_h -9.5 kcal
Quartz #from llnl.dat
SiO2 = SiO2
log_k -3.9993
-delta_H 32.949 kJ/mol # Calculated enthalpy of reaction Quartz
# Enthalpy of formation: -217.65 kcal/mol
-analytic 7.7698e-002 1.0612e-002 3.4651e+003 -4.3551e+000 -7.2138e+005
# -Range: 0-300
#log_k -2.658 #supcrt 150°C and 500 bar
Sphalerite #from wateq4f.dat
ZnS + H+ = Zn+2 + HS-
log_k -11.618
delta_h 8.250 kcal
Galena #from llnl.dat
PbS +1.0000 H+ = + 1.0000 HS- + 1.0000 Pb++
log_k -14.8544
-delta_H 83.1361 kJ/mol # Calculated enthalpy of reaction Galena
# Enthalpy of formation: -23.5 kcal/mol
-analytic -1.2124e+002 -4.3477e-002 -1.6463e+003 5.0454e+001 -2.5654e+001
# -Range: 0-300
Pb #from llnl.dat
Pb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pb++
log_k 47.1871
-delta_H -278.851 kJ/mol # Calculated enthalpy of reaction Pb
# Enthalpy of formation: 0 kJ/mol
-analytic -3.1784e+001 -1.4816e-002 1.4984e+004 1.3383e+001 2.3381e+002
# -Range: 0-300
Anglesite #from wateq4f.dat
PbSO4 = Pb+2 + SO4-2
log_k -7.79
delta_h 2.15 kcal
Plattnerite #from wateq4f.dat
PbO2 + 4H+ + 2e- = Pb+2 + 2H2O
log_k 49.3
delta_h -70.730 kcal
Pb2O3 #from wateq4f.dat
Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O
log_k 61.040
Minium #from wateq4f.dat
Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O
log_k 73.690
delta_h -102.760 kcal
Pb(OH)2 #from wateq4f.dat
Pb(OH)2 + 2H+ = Pb+2 + 2H2O
log_k 8.15
delta_h -13.99 kcal
Laurionite #from wateq4f.dat
PbOHCl + H+ = Pb+2 + Cl- + H2O
log_k 0.623
Pb2(OH)3Cl #from wateq4f.dat
Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl-
log_k 8.793
Hydrocerrusite #from wateq4f.dat
Pb(OH)2:2PbCO3 + 2H+ = 3Pb+2 + 2CO3-2 + 2H2O
log_k -17.460
Pb2O(OH)2 #from wateq4f.dat
PbO:Pb(OH)2 + 4H+ = 2Pb+2 + 3H2O
log_k 26.2
Pb4(OH)6SO4 #from wateq4f.dat
Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O
log_k 21.1
Alamosite #from llnl.dat
PbSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ + 1.0000 SiO2
log_k 5.6733
-delta_H -16.5164 kJ/mol # Calculated enthalpy of reaction Alamosite
# Enthalpy of formation: -1146.1 kJ/mol
-analytic 2.9941e+002 6.7871e-002 -8.1706e+003 -1.1582e+002 -1.3885e+002
# -Range: 0-200
Pb2SiO4 #from llnl.dat
Pb2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Pb++
log_k 18.0370
-delta_H -83.9883 kJ/mol # Calculated enthalpy of reaction Pb2SiO4
# Enthalpy of formation: -1363.55 kJ/mol
-analytic 2.7287e+002 6.3875e-002 -3.7001e+003 -1.0568e+002 -6.2927e+001
# -Range: 0-200
Kaolinite #from llnl.dat
Al2Si2O5(OH)4 +6.0000 H+ = + 2.0000 Al+++ + 2.0000 SiO2 + 5.0000 H2O
log_k 6.8101
-delta_H -151.779 kJ/mol # Calculated enthalpy of reaction Kaolinite
# Enthalpy of formation: -982.221 kcal/mol
-analytic 1.6835e+001 -7.8939e-003 7.7636e+003 -1.2190e+001 -3.2354e+005
# -Range: 0-300
Illite #from llnl.dat
K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +8.0000 H+ = + 0.2500 Mg++ + 0.6000 K+ + 2.3000 Al+++ + 3.5000 SiO2 + 5.0000 H2O
log_k 9.0260
-delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite
# Enthalpy of formation: -1394.71 kcal/mol
-analytic 2.6069e+001 -1.2553e-003 1.3670e+004 -2.0232e+001 -1.1204e+006
# -Range: 0-300
Albite #from llnl.dat
NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2
log_k 2.7645
-delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite
# Enthalpy of formation: -939.68 kcal/mol
-analytic -1.1694e+001 1.4429e-002 1.3784e+004 -7.2866e+000 -1.6136e+006
# -Range: 0-300
Anorthite #from llnl.dat
CaAl2(SiO4)2 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 4.0000 H2O
log_k 26.5780
-delta_H -303.039 kJ/mol # Calculated enthalpy of reaction Anorthite
# Enthalpy of formation: -1007.55 kcal/mol
-analytic 3.9717e-001 -1.8751e-002 1.4897e+004 -6.3078e+000 -2.3885e+005
# -Range: 0-300
Gibbsite #from phreeqc.dat
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
log_k 8.11
delta_h -22.800 kcal
Al(OH)3(a) #from phreeqc.dat
Al(OH)3 + 3 H+ = Al+3 + 3 H2O
log_k 10.8
delta_h -26.500 kcal
Barite #from llnl.dat
BaSO4 = + 1.0000 Ba++ + 1.0000 SO4--
log_k -9.9711
-delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite
# Enthalpy of formation: -352.1 kcal/mol
-analytic -1.8747e+002 -7.5521e-002 2.0790e+003 7.7998e+001 3.2497e+001
# -Range: 0-300
Anhydrite #from llnl.dat
CaSO4 = + 1.0000 Ca+2 + 1.0000 SO4-2
log_k -4.362
-analytic -2.0986e+002 -7.8823e-002 5.0969e+003 8.5642e+001 7.9594e+001
# -Range: 0-300
Gypsum #from llnl.dat
CaSO4:2H2O = + 1.0000 Ca++ + 1.0000 SO4-- + 2.0000 H2O
log_k -4.4823
-analytic -2.4417e+002 -8.3329e-002 5.5958e+003 9.9301e+001 8.7389e+001
# -Range: 0-300
#gases #T and p dependence of log_k can be considered by SUPCRT data (example CH4).
O2(g) #from llnl.dat
O2 = O2
log_k -2.8983
-analytic -7.5001 7.8981e-003 0.0 0.0 2.0027e+005
H2(g) #from llnl.dat
H2 + 0.5 O2 = H2O
log_k 43.0016
-analytic -1.1609e+001 -3.7580e-003 1.5068e+004 2.4198e+000 -7.0997e+004
N2(g) #from llnl.dat
N2 = N2
log_k -3.1864
-analytic -58.453 1.81800E-03 3199 17.909 -27460
H2S(g) #from llnl.dat
H2S = H+ + HS-
log_k -7.9759
-analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001
CH4(g) #from llnl.dat
CH4 = CH4
log_k -2.964 #210°C and 500 bar
#log_k -2.8502 #25°C and 1 bar
#-analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005
NH3(g) #from wateq4f.dat
NH3 = NH3
log_k 1.770
delta_h -8.170 kcal
#log_k 1.7966 #from llnl.dat
#-analytic -1.8758e+001 3.3670e-004 2.5113e+003 4.8619e+000 3.9192e+001
CO2(g) #from llnl.dat
CO2 = CO2
log_k -1.468
-analytic 108.3865 0.01985076 -6919.53 -40.45154 669365.
PITZER
-redox
-B0
HS- Na+ -0.103 #Millero 86
HS- K+ -0.337 #Millero 86
HS- Mg+2 0.466 #Millero 86
HS- Ca+2 0.069 #Millero 86
Ba+2 SO4-2 0.22 #from Pitzer 91, Reardon 90
Ba+2 HSO4- 0.2145 #from Harvie et al. 84 (Ca)
Al+3 Cl- 0.71532 #new Christov 01 # old: 0.76993 (Pitzer & Mayora 73)
Al+3 SO4-2 0.854 #Reardon 88
Na+ Al(OH)4- 0.0454 #Reardon 90
K+ Al(OH)4- -0.0003 #Reardon 90
Ca+2 Al(OH)4- 0.2145 #Reardon 90
Mg+2 Al(OH)4- 0.4746 #Reardon 90
H+ Al(OH)4- 0.2106 #Reardon 90
Fe+3 Cl- 0.31582 #from Cohen 87
NH4+ Cl- 0.0522 #from Pitzer 91
NH4+ HCO3- -0.038 #from Pitzer 91
NH4+ NO3- -0.0154 #from Pitzer 91
-B1
HS- Na+ 0.884 #Millero 1986
HS- K+ 0.884 #Millero 1986
HS- Mg+2 2.264 #Millero 1986
HS- Ca+2 2.264 #Millero 1986
Ba+2 SO4-2 2.88 #from Pitzer 91, Reardon 90
Ba+2 HSO4- 2.53 #from Harvie et al. 84 (Ca)
Al+3 Cl- 5.65087 #new: Christov 2001 #old: 5.845 (Pitzer & Mayora 73)
Al+3 SO4-2 18.53 #from Reardon 88
Na+ Al(OH)4- 0.398 #from Reardon 90
K+ Al(OH)4- 0.1734 #from Reardon 90
Ca+2 Al(OH)4- 2.53 #from Reardon 90
Mg+2 Al(OH)4- 1.729 #from Reardon 90
H+ Al(OH)4- 0.532 #from Reardon 90
Fe+3 Cl- 10.42319 #from Cohen 87
NH4+ Cl- 0.1918 #from Pitzer 91
NH4+ HCO3- -0.070 #from Pitzer 91
NH4+ NO3- 0.1120 #from Pitzer 91
-B2
Ba+2 SO4-2 -41.8 #from Pitzer 91, Reardon 90
Ba+2 HSO4- 0 #from Harvie et al. 84 (Ca)
Al+3 Cl- 0 #from Christov 2001
Al+3 SO4-2 -500 #from Reardon 88
-C0
Ba+2 SO4-2 0.19 #from Pitzer 91, Reardon 90
Ba+2 HSO4- 0 #from Harvie et al. 84 (Ca)
Al+3 Cl- -0.00418 #new: Christov 2001 #old: -0.005292(Pitzer & Mayora 73)
Al+3 SO4-2 -0.0911 #from Reardon 88
Fe+3 Cl- -0.01008 #from Cohen 87
NH4+ Cl- -0.00301 #from Pitzer 91
NH4+ HCO3- 0 #from Pitzer 91
NH4+ NO3- -0.00003 #from Pitzer 91
-THETA
Na+ H+ 0.036 #from Pitzer 91
K+ H+ 0.005 #from Pitzer 91
Cl- Al(OH)4- -0.006 #from Reardon 88
Fe+3 Na+ 0.24539 #from Moog & Hagemann 04
Fe+3 K+ 0.14924 #from Moog & Hagemann 04
Fe+3 Mg+2 0.1538 #from Moog & Hagemann 04
Fe+3 Ca+2 0.16291 #from Moog & Hagemann 04
-PSI
Na+ H+ Al(OH)4- -0.0129 #from Reardon 90
K+ H+ Al(OH)4- -0.0265 #from Reardon 90
Ca+2 H+ Al(OH)4- 0 #from Reardon 90
Mg+2 H+ Al(OH)4- -0.178 #from Reardon 90
Cl- Na+ Al(OH)4- -0.005 #from Reardon 90
SO4-2 Na+ Al(OH)4- -0.0094 #from Reardon 90
SO4-2 K+ Al(OH)4- -0.0677 #from Reardon 90
Cl- Mg+2 Al(OH)4- 0 #from Reardon 90
SO4-2 Mg+2 Al(OH)4- -0.0425 #from Reardon 90
Cl- H+ Al(OH)4- 0.013 #from Reardon 90
Fe+3 Na+ Cl- -0.02741 #from Moog & Hagemann 04
Fe+3 K+ Cl- -0.03579 #from Moog & Hagemann 04
Fe+3 Ca+2 Cl- -0.04910 #from Moog & Hagemann 04
Fe+3 Mg+2 Cl- -0.07715 #from Moog & Hagemann 04
#-LAMDA #25°C #Azaroual et al. 1997, Table 1
#Na+ SiO2 0.0925
#K+ SiO2 0.03224
#Mg+2 SiO2 0.2925
#Ca+2 SiO2 0.2925
#Li+ SiO2 0.16466
#Cl- SiO2 0.0
#SO4-2 SiO2 -0.13963
#HCO3- SiO2 0.0016
#-LAMDA 60°C #Azaroual et al. 1997, Table 1
#Na+ SiO2 0.09
#K+ SiO2 0.03
#Mg+2 SiO2 0.27
#Ca+2 SiO2 0.27
#Li+ SiO2 0.14
#Cl- SiO2 0.0
#SO4-2 SiO2 -0.138
#HCO3- SiO2 0.005
-LAMDA 100°C #Azaroual et al. 1997
Na+ SiO2 0.08
K+ SiO2 0.025
Mg+2 SiO2 0.25
Ca+2 SiO2 0.25
Li+ SiO2 0.135
Cl- SiO2 0.0
SO4-2 SiO2 -0.13
HCO3- SiO2 0.01
#-LAMDA #150°C #Azaroual et al. 1997
#Na+ SiO2 0.065
#K+ SiO2 0.02
#Mg+2 SiO2 0.22
#Ca+2 SiO2 0.22
#Li+ SiO2 0.125
#Cl- SiO2 0.0
#SO4-2 SiO2 -0.14
#HCO3- SiO2 0.01
#-LAMDA 200°C #Azaroual et al. 1997
#Na+ SiO2 0.05
#K+ SiO2 0.019
#Mg+2 SiO2 0.19
#Ca+2 SiO2 0.19
#Li+ SiO2 0.095
#Cl- SiO2 0.0
#SO4-2 SiO2 -0.15
#HCO3- SiO2 0.01
#-LAMDA #25°C #Marion et al. 2006, Table 1
#Na+ CH4 9.92230792E-02
#K+ CH4 0.13909
#Mg+2 CH4 0.24678
#Ca+2 CH4 -5.64278808
#Fe+2 CH4 0.24678 #Marion et al. 2006 (Fe = Mg)
#Cl- CH4 0.0
#SO4-2 CH4 0.03041
#HCO3- CH4 0.00669
#CO3-2 CH4 0.16596
SOLUTION 1 #deep water
units mg/l
ph 5.15 #measured at the surface
pe -0.14 #calcutlated with Eh = -10 and T = 371.15 K
temp 98
K 782
Na 80010
Ca 8409
Mg 1410
N(+5) 70
Sr 440
Fe 60
Mn 8.3
Li 10
Ba 5.3
Pb 0.5
Cu 0.053 #not included in gebo/pitzer
Cl 137000
Br 390
S(6) 470
C(4) 40 as HCO3 #bicarbonate
reaction_pressure
236.862 #depth of the reservoir ~2400 m
END
«
Last Edit: 15/02/16 11:19 by Hydroman
»
Logged
dlparkhurst
Global Moderator
Posts: 4062
Re: Gas content deep water
«
Reply #1 on:
15/02/16 17:25 »
If you want to take pressure into account, you will need to include molar volumes in the SOLUTION_SPECIES definitions. The current versions of phreeqc.dat and pitzer.dat have data for -Vm for each aqueous species. In addition, the PHASES definitions for CO2 and other gases need the Vm data as well as the Peng-Robinson parameters (see CO2(g) in one of these two databases for an example).
Unless you are willing to do a lot of literature work and data fitting, I do not recommend that you mix and match to produce a Pitzer database.
I am not sure whether you asked a question, but if you want to re-equilibrate a solution and gas at the down-hole temperature and pressure, you can define a reaction with your solution composition (SOLUTION) and a GAS_PHASE with the gas composition and let them react at the estimated temperature and pressure:
SOLUTION
...
END
GAS_PHASE
...
END
USE solution 1
USE gas_phase 1
REACTION_TEMPERATURE
tc
REACTION_PRESSURE
p
END
You could also use REACTION in place of GAS_PHASE to add specified moles of gases to the reaction calculation.
Logged
Print
Pages: [
1
]
Go Up
« previous
next »
PhreeqcUsers Discussion Forum
»
Processes
»
Dissolution and precipitation
»
Gas content deep water