PhreeqcUsers Discussion Forum

Registrations currently disabled due to excessive spam. Please email phreeqcusers at gmail.com to request an account.
Welcome Guest
 

  • Forum Home
  • Login
  • Register

  • PhreeqcUsers Discussion Forum »
  • Processes »
  • Dissolution and precipitation »
  • Gas content deep water
« previous next »
  • Print
Pages: [1]   Go Down

Author Topic: Gas content deep water  (Read 3693 times)

Hydroman

  • Top Contributor
  • Posts: 25
Gas content deep water
« on: 15/02/16 11:18 »
I like to model the effect of pressure and temperature on the gas solubility in geothermal plants. On the hand I have got a deep water analyse and on the other hand I have knowledge about the gas-content in the water.

The gas content in the deep water is: 10%
CO2 = 94 Vol-%
CH4 = 3%
N2 = 3%

My question is: How can I include the dissolved gas-phases (gas content) in my code?

Hint: Solution at the end.

Is use the pitzer-database and the "gebo-database"


TITLE "gebo"-Datensatz

#"gebo"-database must be used in combination with "pitzer.dat"
#The inserted data are taken from literature and various thermodynamic databases.
#The references of the data are given behind their input.
#THE USER IS RESPONSIBLE FOR THE RESULTS OF MODELLING!

#Select temperature of Pitzer parameter lamda.
#T and p dependence can be considered by adaptation of log k values.
#Systems/waters with different temperatures and pressures must be treated seperately.

SOLUTION_MASTER_SPECIES
Fe          Fe+2         0.0     Fe      55.847
Fe(+2)      Fe+2         0.0     Fe
Fe(+3)      Fe+3         0.0     Fe
S(-2)      HS-         1.0      S
N         NO3-      0.0      N      14.0067
N(+5)      NO3-      0.0      NO3
N(+3)      NO2-      0.0      NO2
N(0)      N2         0.0      N
N(-3)       NH4+        0.0     NH4
C(-4)      CH4         0.0      CH4
Si           SiO2         0.0     Si      28.0855
Zn            Zn+2        0.0        Zn      65.37
Pb           Pb+2         0.0       Pb      207.20
Al           Al+3         0.0       Al      26.9815

SOLUTION_SPECIES
H2O = OH- + H+  #from phreeqc.dat
   log_k      -13.998
   delta_h 13.345  kcal
   -analytic       -283.971       -0.05069842  13323.0    102.24447      -1119669.0
   -dw    5.27e-9

2 H2O = O2 + 4 H+ + 4 e-  #from phreeqc.dat
   log_k      -86.08
   delta_h 134.79 kcal
   -dw    2.35e-9

2 H+ + 2 e- = H2    #from phreeqc.dat
   log_k      -3.15
   delta_h -1.759 kcal
   -dw    5.1e-9

Fe+2 = Fe+3 + e-     #from phreeqc.dat
   log_k   -13.02
   delta_h 9.680   kcal
   -gamma   9.0   0.0

Fe+3 + H2O = FeOH+2 + H+    #from phreeqc.dat
   log_k   -2.19
   delta_h 10.4   kcal

Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+  #from phreeqc.dat
   log_k   -5.67
   delta_h 17.1   kcal

Fe+3 + 3 H2O = Fe(OH)3 + 3 H+    #from phreeqc.dat
   log_k   -12.56
   delta_h 24.8   kcal

Fe+3 + 4 H2O = Fe(OH)4- + 4 H+    #from phreeqc.dat
   log_k   -21.6
   delta_h 31.9   kcal

2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+    #from phreeqc.dat
   log_k   -2.95
   delta_h 13.5   kcal

3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+     #from phreeqc.dat
   log_k   -6.3
   delta_h 14.3   kcal

Fe+3 + Cl- = FeCl+2     #from phreeqc.dat
   log_k   1.48
   delta_h 5.6   kcal

Fe+3 + 2 Cl- = FeCl2+     #from phreeqc.dat
   log_k   2.13

Fe+3 + 3 Cl- = FeCl3      #from phreeqc.dat
   log_k   1.13

Fe+3 + SO4-2 = FeSO4+      #from phreeqc.dat
   log_k   4.04
   delta_h 3.91   kcal

Fe+3 + HSO4- = FeHSO4+2    #from phreeqc.dat
   log_k   2.48

Fe+3 + 2 SO4-2 = Fe(SO4)2-  #from phreeqc.dat
   log_k   5.38
   delta_h 4.60   kcal

SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O    #from phreeqc.dat
   log_k   33.65
   delta_h -60.140 kcal
   -gamma   3.5   0.0

HS- + H+ = H2S    #from phreeqc.dat
   log_k      6.994
   delta_h -5.3 kcal
   -analytical   -11.17   0.02386   3279.0

HS- = S-2 + H+   #from phreeqc.dat
   log_k   -12.918
   delta_h 12.1   kcal
   -gamma   5.0   0.0

NH4+ = NH4+
   log_k   0.0
   -gamma   2.5   0.0

NO3- = NO3-
   log_k   0.0
   -gamma   3.0   0.0

NO3- + 2 H+ + 2 e- = NO2- + H2O   #from phreeqc.dat
   log_k   28.570
   delta_h -43.760 kcal
   -gamma   3.0   0.0

2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O  #from phreeqc.dat
   log_k   207.08
   delta_h -312.130   kcal

NH4+ = NH3 + H+  #from phreeqc.dat
   log_k   -9.252
   delta_h 12.48   kcal
        -analytic    0.6322    -0.001225     -2835.76

NO3- + 10H+ + 8e- = NH4+ + 3H2O  #from wateq4f.dat
   log_k      119.077
   delta_h -187.055 kcal

CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O  #from wateq4f.dat
   log_k   41.071
   delta_h -61.039 kcal

SiO2 = SiO2
 log_k   0.000

Zn+2 = Zn+2    #from phreeqc.dat
   log_k   0.0
   -gamma   5.0   0.0

Zn+2 + H2O = ZnOH+ + H+   #from phreeqc.dat
   log_k   -8.96
   delta_h 13.4 kcal

Zn+2 + 2 H2O = Zn(OH)2 + 2 H+    #from phreeqc.dat
   log_k   -16.9

Zn+2 + 3 H2O = Zn(OH)3- + 3 H+   #from phreeqc.dat
   log_k   -28.4

Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+  #from phreeqc.dat
   log_k   -41.2

Zn+2 + Cl- = ZnCl+      #from phreeqc.dat
   log_k   0.43
   delta_h 7.79 kcal

Zn+2 + 2 Cl- = ZnCl2    #from phreeqc.dat
   log_k   0.45
   delta_h 8.5 kcal

Zn+2 + 3Cl- = ZnCl3-    #from phreeqc.dat
   log_k   0.5
   delta_h 9.56 kcal

Zn+2 + 4Cl- = ZnCl4-2    #from phreeqc.dat
   log_k   0.2
   delta_h 10.96 kcal

Zn+2 + CO3-2 = ZnCO3     #from phreeqc.dat
   log_k   5.3

Zn+2 + 2CO3-2 = Zn(CO3)2-2    #from phreeqc.dat
   log_k   9.63

Zn+2 + HCO3- = ZnHCO3+     #from phreeqc.dat
   log_k   2.1

Zn+2 + SO4-2 = ZnSO4       #from phreeqc.dat
   log_k   2.37
   delta_h 1.36 kcal

Zn+2 + 2SO4-2 = Zn(SO4)2-2     #from phreeqc.dat
   log_k   3.28

Pb+2 = Pb+2
   log_k   0.0

1.0000 Pb++ + 1.0000 HCO3-  =  PbCO3 +1.0000 H+   #from llnl.dat
        -llnl_gamma           3.0
        log_k           -3.7488
   -delta_H   0            # Not possible to calculate enthalpy of reaction   PbCO3
#   Enthalpy of formation:   -0 kcal/mol

1.0000 Pb++ + 1.0000 Cl-  =  PbCl+  #from llnl.dat
        -llnl_gamma           4.0
        log_k           +1.4374
   -delta_H   4.53127   kJ/mol   # Calculated enthalpy of reaction   PbCl+
#   Enthalpy of formation:   -38.63 kcal/mol
        -analytic 1.1948e+002 4.3527e-002 -2.7666e+003 -4.9190e+001 -4.3206e+001
#       -Range:  0-300

2.0000 Cl- + 1.0000 Pb++  =  PbCl2   #from llnl.dat
        -llnl_gamma           3.0
        log_k           +2.0026
   -delta_H   8.14206   kJ/mol   # Calculated enthalpy of reaction   PbCl2
#   Enthalpy of formation:   -77.7 kcal/mol
        -analytic 2.2537e+002 7.7574e-002 -5.5112e+003 -9.2131e+001 -8.6064e+001
#       -Range:  0-300

3.0000 Cl- + 1.0000 Pb++  =  PbCl3-    #from llnl.dat
        -llnl_gamma           4.0
        log_k           +1.6881
   -delta_H   7.86174   kJ/mol   # Calculated enthalpy of reaction   PbCl3-
#   Enthalpy of formation:   -117.7 kcal/mol
        -analytic 2.5254e+002 8.9159e-002 -6.0116e+003 -1.0395e+002 -9.3880e+001
#       -Range:  0-300

4.0000 Cl- + 1.0000 Pb++  =  PbCl4--   #from llnl.dat
        -llnl_gamma           4.0
        log_k           +1.4909
   -delta_H   -7.18811   kJ/mol   # Calculated enthalpy of reaction   PbCl4-2
#   Enthalpy of formation:   -161.23 kcal/mol
        -analytic 1.4048e+002 7.6332e-002 -1.1507e+003 -6.3786e+001 -1.7997e+001
#       -Range:  0-300

Al+3 = Al+3
   log_k   0.000

Al+3 + H2O = AlOH+2 + H+     #from wateq4f.dat
   log_k      -5.0
   delta_h 11.49 kcal
   -analytical   -38.253   0.0   -656.27   14.327   0.0

Al+3 + 2H2O = Al(OH)2+ + 2H+   #from wateq4f.dat
   log_k      -10.1
   delta_h 26.9 kcal
   -analytical   88.5   0.0   -9391.6   -27.121   0.0

Al+3 + 3H2O = Al(OH)3 + 3H+   #from wateq4f.dat
   log_k      -16.9
   delta_h 39.89 kcal
   -analytical   226.374   0.0   -18247.8   -73.597   0.0

Al+3 + 4H2O = Al(OH)4- + 4H+   #from wateq4f.dat
   log_k      -22.7
   delta_h 42.3 kcal
   -analytical   51.578      0.0   -11168.9   -14.865   0.0

Na+ + H2O = NaOH + H+  #from wateq4f.dat
   log_k   -14.18

Na+ + CO3-2 = NaCO3-   #from wateq4f.dat
   log_k   1.27
   delta_h 8.910   kcal

Na+ + HCO3- = NaHCO3    #from wateq4f.dat
   log_k   -0.25

Na+ + SO4-2 = NaSO4-    #from wateq4f.dat
   log_k   0.7
   delta_h 1.120   kcal

Ca+2 + H2O = CaOH+ + H+  #from wateq4f.dat
   log_k      -12.78
   delta_h 15.419 kcal  #no Ca data, analog Mg

Cl- +  Ca+2  =  CaCl+   #from llnl.dat
   -llnl_gamma           4.0
    log_k           -0.6956
   -delta_H   2.02087   kJ/mol   # Calculated enthalpy of reaction   CaCl+
#   Enthalpy of formation:   -169.25 kcal/mol
        -analytic 8.1498e+001 3.8387e-002 -1.3763e+003 -3.5968e+001 -2.1501e+001
#       -Range:  0-300

2Cl- + Ca+2  =  CaCl2   #from llnl.dat
   -llnl_gamma           3.0
    log_k           -0.6436
   -delta_H   -5.8325   kJ/mol   # Calculated enthalpy of reaction   CaCl2
#   Enthalpy of formation:   -211.06 kcal/mol
        -analytic 1.8178e+002 7.6910e-002 -3.1088e+003 -7.8760e+001 -4.8563e+001
#       -Range:  0-300

Ba+2 + SO4-2 = BaSO4   #from wateq4f.dat
   log_k      2.7

Cl- +  Ba+2  =  BaCl+  #from llnl.dat analogue Ca+2
   -llnl_gamma           4.0
    log_k           -0.6956
   -delta_H   2.02087   kJ/mol   # Calculated enthalpy of reaction   CaCl+
#   Enthalpy of formation:   -169.25 kcal/mol
        -analytic 8.1498e+001 3.8387e-002 -1.3763e+003 -3.5968e+001 -2.1501e+001
#       -Range:  0-300

2Cl- + Ba+2  =  BaCl2   #from llnl.dat analogue Ca+2
   -llnl_gamma           3.0
    log_k           -0.6436
   -delta_H   -5.8325   kJ/mol   # Calculated enthalpy of reaction   CaCl2
#   Enthalpy of formation:   -211.06 kcal/mol
        -analytic 1.8178e+002 7.6910e-002 -3.1088e+003 -7.8760e+001 -4.8563e+001
#       -Range:  0-300

PHASES
Siderite #from phreeqc.dat
   FeCO3 = Fe+2 + CO3-2
   log_k   -10.89
   delta_h  -2.480 kcal

Hematite  #from wateq4f.dat
   Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O
   log_k   -4.008
   delta_h -30.845 kcal

Goethite   #from wateq4f.dat
   FeOOH + 3 H+ = Fe+3 + 2 H2O
   log_k   -1.0
    delta_h  -14.48 kcal

Fe(OH)3(a)  #from wateq4f.dat
   Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O
   log_k   4.891

Pyrite  #from wateq4f.dat
   FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS-
   log_k   -18.479
   delta_h 11.300 kcal

FeS(ppt) #from wateq4f.dat
   FeS + H+ = Fe+2 + HS-
   log_k   -3.915

Pyrrhotite #from llnl.dat
   FeS + H+  =  Fe+2 + HS-
    log_k           -3.7193
     -analytic -1.5785e+002 -5.2258e-002 3.9711e+003 6.3195e+001 6.2012e+001
#   -Range:  0-300

Magnetite  #from llnl.dat
   Fe3O4 +8.0000 H+  =  + 1.0000 Fe+2 + 2.0000 Fe+3 + 4.0000 H2O
    log_k           10.4724
     -analytic -3.0510e+002 -7.9919e-002 1.8709e+004 1.1178e+002 2.9203e+002
#   -Range:  0-300

Mackinawite #from wateq4f.dat
   FeS + H+ = Fe+2 + HS-
   log_k   -4.648

FeMetal            #(Stumm & Morgan, 1981)
   Fe = Fe+2 + 2e-
    log_k       14.9

Sulfur  #from wateq4f.dat
   S + 2H+ + 2e- = H2S
   log_k   4.882
   delta_h -9.5 kcal

Quartz  #from llnl.dat
   SiO2 = SiO2
   log_k           -3.9993
   -delta_H   32.949   kJ/mol   # Calculated enthalpy of reaction Quartz
#   Enthalpy of formation:   -217.65 kcal/mol
        -analytic 7.7698e-002 1.0612e-002 3.4651e+003 -4.3551e+000 -7.2138e+005
#       -Range:  0-300
    #log_k -2.658  #supcrt 150°C and 500 bar

Sphalerite #from wateq4f.dat
   ZnS + H+ = Zn+2 + HS-
   log_k -11.618
   delta_h 8.250   kcal

Galena #from llnl.dat
   PbS +1.0000 H+  =  + 1.0000 HS- + 1.0000 Pb++
    log_k           -14.8544
   -delta_H   83.1361   kJ/mol   # Calculated enthalpy of reaction Galena
#   Enthalpy of formation:   -23.5 kcal/mol
   -analytic -1.2124e+002 -4.3477e-002 -1.6463e+003 5.0454e+001 -2.5654e+001
#   -Range:  0-300

Pb  #from llnl.dat
   Pb +2.0000 H+ +0.5000 O2  =  + 1.0000 H2O + 1.0000 Pb++
    log_k           47.1871
   -delta_H   -278.851   kJ/mol   # Calculated enthalpy of reaction   Pb
#   Enthalpy of formation:   0 kJ/mol
        -analytic -3.1784e+001 -1.4816e-002 1.4984e+004 1.3383e+001 2.3381e+002
#       -Range:  0-300

Anglesite  #from wateq4f.dat
   PbSO4 = Pb+2 + SO4-2
   log_k      -7.79
   delta_h 2.15 kcal

Plattnerite #from wateq4f.dat
   PbO2 + 4H+ + 2e- = Pb+2 + 2H2O
   log_k      49.3
   delta_h -70.730 kcal

Pb2O3  #from wateq4f.dat
   Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O
   log_k      61.040

Minium  #from wateq4f.dat
   Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O
   log_k      73.690
   delta_h -102.760 kcal

Pb(OH)2  #from wateq4f.dat
   Pb(OH)2 + 2H+ = Pb+2 + 2H2O
   log_k      8.15
   delta_h -13.99 kcal

Laurionite  #from wateq4f.dat
   PbOHCl + H+ = Pb+2 + Cl- + H2O
   log_k      0.623

Pb2(OH)3Cl  #from wateq4f.dat
   Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl-
   log_k      8.793

Hydrocerrusite #from wateq4f.dat
   Pb(OH)2:2PbCO3 + 2H+ = 3Pb+2 + 2CO3-2 + 2H2O
   log_k      -17.460

Pb2O(OH)2  #from wateq4f.dat
   PbO:Pb(OH)2 + 4H+ = 2Pb+2 + 3H2O
   log_k      26.2

Pb4(OH)6SO4 #from wateq4f.dat
   Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O
   log_k      21.1

Alamosite  #from llnl.dat
        PbSiO3 +2.0000 H+  =  + 1.0000 H2O + 1.0000 Pb++ + 1.0000 SiO2
        log_k           5.6733
   -delta_H   -16.5164   kJ/mol   # Calculated enthalpy of reaction Alamosite
#   Enthalpy of formation:   -1146.1 kJ/mol
        -analytic 2.9941e+002 6.7871e-002 -8.1706e+003 -1.1582e+002 -1.3885e+002
#       -Range:  0-200

Pb2SiO4   #from llnl.dat
       Pb2SiO4 +4.0000 H+  =  + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Pb++
        log_k           18.0370
   -delta_H   -83.9883   kJ/mol   # Calculated enthalpy of reaction Pb2SiO4
#   Enthalpy of formation:   -1363.55 kJ/mol
        -analytic 2.7287e+002 6.3875e-002 -3.7001e+003 -1.0568e+002 -6.2927e+001
#       -Range:  0-200

Kaolinite #from llnl.dat
        Al2Si2O5(OH)4 +6.0000 H+  =  + 2.0000 Al+++ + 2.0000 SiO2 + 5.0000 H2O
        log_k           6.8101
   -delta_H   -151.779   kJ/mol   # Calculated enthalpy of reaction   Kaolinite
#   Enthalpy of formation:   -982.221 kcal/mol
        -analytic 1.6835e+001 -7.8939e-003 7.7636e+003 -1.2190e+001 -3.2354e+005
#       -Range:  0-300

Illite #from llnl.dat
        K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +8.0000 H+  =  + 0.2500 Mg++ + 0.6000 K+ + 2.3000 Al+++ + 3.5000 SiO2 + 5.0000 H2O
        log_k           9.0260
   -delta_H   -171.764   kJ/mol   # Calculated enthalpy of reaction   Illite
#   Enthalpy of formation:   -1394.71 kcal/mol
        -analytic 2.6069e+001 -1.2553e-003 1.3670e+004 -2.0232e+001 -1.1204e+006
#       -Range:  0-300

Albite #from llnl.dat
        NaAlSi3O8 +4.0000 H+  =  + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2
        log_k           2.7645
   -delta_H   -51.8523   kJ/mol   # Calculated enthalpy of reaction   Albite
#   Enthalpy of formation:   -939.68 kcal/mol
        -analytic -1.1694e+001 1.4429e-002 1.3784e+004 -7.2866e+000 -1.6136e+006
#       -Range:  0-300

Anorthite #from llnl.dat
        CaAl2(SiO4)2 +8.0000 H+  =  + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 4.0000 H2O
        log_k           26.5780
   -delta_H   -303.039   kJ/mol   # Calculated enthalpy of reaction   Anorthite
#   Enthalpy of formation:   -1007.55 kcal/mol
        -analytic 3.9717e-001 -1.8751e-002 1.4897e+004 -6.3078e+000 -2.3885e+005
#       -Range:  0-300

Gibbsite     #from phreeqc.dat
   Al(OH)3 + 3 H+ = Al+3 + 3 H2O
   log_k     8.11
   delta_h -22.800 kcal

Al(OH)3(a)  #from phreeqc.dat
   Al(OH)3 + 3 H+ = Al+3 + 3 H2O
   log_k    10.8
   delta_h -26.500 kcal

Barite #from llnl.dat
        BaSO4  =  + 1.0000 Ba++ + 1.0000 SO4--
        log_k           -9.9711
   -delta_H   25.9408   kJ/mol   # Calculated enthalpy of reaction Barite
#   Enthalpy of formation:   -352.1 kcal/mol
        -analytic -1.8747e+002 -7.5521e-002 2.0790e+003 7.7998e+001 3.2497e+001
#       -Range:  0-300

Anhydrite #from llnl.dat
   CaSO4  =  + 1.0000 Ca+2 + 1.0000 SO4-2
   log_k   -4.362
    -analytic -2.0986e+002 -7.8823e-002 5.0969e+003 8.5642e+001 7.9594e+001
#   -Range:  0-300

Gypsum  #from llnl.dat
   CaSO4:2H2O  =  + 1.0000 Ca++ + 1.0000 SO4-- + 2.0000 H2O
    log_k           -4.4823
     -analytic -2.4417e+002 -8.3329e-002 5.5958e+003 9.9301e+001 8.7389e+001
#   -Range:  0-300

#gases  #T and p dependence of log_k can be considered by SUPCRT data (example CH4).
O2(g) #from llnl.dat
   O2 = O2
   log_k   -2.8983
    -analytic -7.5001 7.8981e-003 0.0 0.0 2.0027e+005

H2(g) #from llnl.dat
       H2 + 0.5 O2 = H2O
    log_k 43.0016
    -analytic -1.1609e+001 -3.7580e-003 1.5068e+004 2.4198e+000 -7.0997e+004

N2(g) #from llnl.dat
   N2 = N2
   log_k       -3.1864
   -analytic -58.453 1.81800E-03  3199  17.909 -27460

H2S(g) #from llnl.dat
   H2S  =  H+ + HS-
   log_k           -7.9759
    -analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001

CH4(g) #from llnl.dat
   CH4 = CH4
    log_k   -2.964   #210°C and 500 bar
   #log_k   -2.8502 #25°C and 1 bar
   #-analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005

NH3(g) #from wateq4f.dat
   NH3 = NH3
   log_k      1.770
   delta_h -8.170 kcal
   #log_k           1.7966   #from llnl.dat
    #-analytic -1.8758e+001 3.3670e-004 2.5113e+003 4.8619e+000 3.9192e+001

CO2(g) #from llnl.dat
   CO2 = CO2
   log_k      -1.468
   -analytic       108.3865    0.01985076  -6919.53    -40.45154    669365.


PITZER
-redox
-B0
HS-      Na+         -0.103      #Millero 86
HS-     K+         -0.337      #Millero 86
HS-       Mg+2        0.466      #Millero 86
HS-       Ca+2        0.069      #Millero 86
Ba+2    SO4-2      0.22          #from Pitzer 91, Reardon 90
Ba+2    HSO4-      0.2145      #from Harvie et al. 84 (Ca)
Al+3      Cl-         0.71532    #new Christov 01 # old: 0.76993 (Pitzer & Mayora 73)
Al+3    SO4-2        0.854         #Reardon 88
Na+      Al(OH)4-     0.0454     #Reardon 90
K+       Al(OH)4-     -0.0003      #Reardon 90
Ca+2     Al(OH)4-    0.2145      #Reardon 90
Mg+2     Al(OH)4-     0.4746      #Reardon 90
H+       Al(OH)4-     0.2106      #Reardon 90
Fe+3    Cl-       0.31582      #from Cohen 87
NH4+    Cl-           0.0522      #from Pitzer 91
NH4+    HCO3-         -0.038      #from Pitzer 91
NH4+    NO3-        -0.0154      #from Pitzer 91

-B1
HS-     Na+        0.884      #Millero 1986
HS-       K+         0.884      #Millero 1986
HS-     Mg+2       2.264      #Millero 1986
HS-     Ca+2       2.264      #Millero 1986
Ba+2    SO4-2      2.88        #from Pitzer 91, Reardon 90
Ba+2    HSO4-      2.53        #from Harvie et al. 84 (Ca)
Al+3     Cl-       5.65087       #new: Christov 2001 #old: 5.845 (Pitzer & Mayora 73)
Al+3     SO4-2        18.53       #from Reardon 88
Na+      Al(OH)4-     0.398      #from Reardon 90
K+      Al(OH)4-     0.1734      #from Reardon 90
Ca+2     Al(OH)4-     2.53      #from Reardon 90
Mg+2     Al(OH)4-     1.729      #from Reardon 90
H+       Al(OH)4-     0.532      #from Reardon 90
Fe+3    Cl-       10.42319    #from Cohen 87
NH4+    Cl-         0.1918      #from Pitzer 91
NH4+    HCO3-         -0.070        #from Pitzer 91
NH4+    NO3-          0.1120        #from Pitzer 91

-B2
Ba+2    SO4-2      -41.8       #from Pitzer 91, Reardon 90
Ba+2    HSO4-        0           #from Harvie et al. 84 (Ca)
Al+3     Cl-       0             #from Christov 2001
Al+3     SO4-2        -500          #from Reardon 88

-C0
Ba+2    SO4-2      0.19        #from Pitzer 91, Reardon 90
Ba+2      HSO4-       0             #from Harvie et al. 84 (Ca)
Al+3     Cl-       -0.00418    #new: Christov 2001 #old: -0.005292(Pitzer & Mayora 73)
Al+3     SO4-2       -0.0911       #from Reardon 88
Fe+3    Cl-       -0.01008    #from Cohen 87
NH4+    Cl-         -0.00301    #from Pitzer 91
NH4+    HCO3-         0             #from Pitzer 91
NH4+    NO3-        -0.00003    #from Pitzer 91

-THETA
Na+     H+         0.036      #from Pitzer 91
K+       H+         0.005      #from Pitzer 91
Cl-      Al(OH)4-     -0.006      #from Reardon 88
Fe+3   Na+         0.24539    #from Moog & Hagemann 04
Fe+3   K+        0.14924    #from Moog & Hagemann 04
Fe+3   Mg+2       0.1538       #from Moog & Hagemann 04
Fe+3   Ca+2       0.16291    #from Moog & Hagemann 04

-PSI
Na+      H+      Al(OH)4-   -0.0129     #from Reardon 90
K+       H+      Al(OH)4-    -0.0265     #from Reardon 90
Ca+2     H+      Al(OH)4-    0           #from Reardon 90
Mg+2     H+      Al(OH)4-    -0.178      #from Reardon 90
Cl-      Na+    Al(OH)4-     -0.005        #from Reardon 90
SO4-2    Na+    Al(OH)4-     -0.0094     #from Reardon 90
SO4-2   K+      Al(OH)4-    -0.0677     #from Reardon 90
Cl-      Mg+2   Al(OH)4-     0           #from Reardon 90
SO4-2    Mg+2    Al(OH)4-     -0.0425       #from Reardon 90
Cl-      H+      Al(OH)4-     0.013       #from Reardon 90
Fe+3    Na+      Cl-          -0.02741      #from Moog & Hagemann 04
Fe+3    K+      Cl-          -0.03579      #from Moog & Hagemann 04
Fe+3    Ca+2   Cl-          -0.04910      #from Moog & Hagemann 04
Fe+3   Mg+2   Cl-          -0.07715      #from Moog & Hagemann 04

#-LAMDA #25°C #Azaroual et al. 1997, Table 1
#Na+       SiO2    0.0925
#K+        SiO2    0.03224
#Mg+2        SiO2    0.2925
#Ca+2      SiO2    0.2925
#Li+       SiO2    0.16466
#Cl-         SiO2    0.0
#SO4-2     SiO2    -0.13963
#HCO3-     SiO2    0.0016

#-LAMDA 60°C #Azaroual et al. 1997, Table 1
#Na+       SiO2    0.09
#K+        SiO2    0.03
#Mg+2      SiO2    0.27
#Ca+2        SiO2    0.27
#Li+       SiO2    0.14
#Cl-       SiO2    0.0
#SO4-2     SiO2    -0.138
#HCO3-     SiO2    0.005

-LAMDA 100°C #Azaroual et al. 1997
Na+       SiO2    0.08
K+        SiO2    0.025
Mg+2      SiO2    0.25
Ca+2      SiO2    0.25
Li+       SiO2    0.135
Cl-       SiO2    0.0
SO4-2       SiO2    -0.13
HCO3-       SiO2    0.01

#-LAMDA #150°C #Azaroual et al. 1997
#Na+          SiO2    0.065
#K+           SiO2    0.02
#Mg+2         SiO2    0.22
#Ca+2         SiO2    0.22
#Li+          SiO2    0.125
#Cl-          SiO2    0.0
#SO4-2        SiO2    -0.14
#HCO3-        SiO2    0.01

#-LAMDA 200°C #Azaroual et al. 1997
#Na+       SiO2    0.05
#K+        SiO2    0.019
#Mg+2      SiO2    0.19
#Ca+2      SiO2    0.19
#Li+         SiO2    0.095
#Cl-       SiO2      0.0
#SO4-2     SiO2    -0.15
#HCO3-     SiO2    0.01

#-LAMDA #25°C #Marion et al. 2006, Table 1
#Na+          CH4       9.92230792E-02
#K+           CH4       0.13909
#Mg+2        CH4       0.24678
#Ca+2         CH4     -5.64278808
#Fe+2         CH4       0.24678 #Marion et al. 2006 (Fe = Mg)
#Cl-          CH4       0.0
#SO4-2        CH4       0.03041
#HCO3-        CH4       0.00669
#CO3-2        CH4       0.16596

SOLUTION 1 #deep water
units mg/l
ph 5.15 #measured at the surface
pe -0.14 #calcutlated with Eh = -10 and T = 371.15 K
temp 98
K 782
Na 80010
Ca 8409
Mg 1410
N(+5) 70
Sr 440
Fe 60
Mn 8.3
Li 10
Ba 5.3
Pb 0.5
Cu 0.053 #not included in gebo/pitzer
Cl 137000
Br 390
S(6) 470
C(4) 40 as HCO3 #bicarbonate
reaction_pressure
236.862 #depth of the reservoir ~2400 m
END

« Last Edit: 15/02/16 11:19 by Hydroman »
Logged

dlparkhurst

  • Global Moderator
  • *****
  • Posts: 4062
Re: Gas content deep water
« Reply #1 on: 15/02/16 17:25 »
If you want to take pressure into account, you will need to include molar volumes in the SOLUTION_SPECIES definitions. The current versions of phreeqc.dat and pitzer.dat have data for -Vm for each aqueous species. In addition, the PHASES definitions for CO2 and other gases need the Vm data as well as the Peng-Robinson parameters (see CO2(g) in one of these two databases for an example).

Unless you are willing to do a lot of literature work and data fitting, I do not recommend that you mix and match to produce a Pitzer database.

I am not sure whether you asked a question, but if you want to re-equilibrate a solution and gas at the down-hole temperature and pressure, you can define a reaction with your solution composition (SOLUTION) and a GAS_PHASE with the gas composition and let them react at the estimated temperature and pressure:


SOLUTION
...
END
GAS_PHASE
...
END
USE solution  1
USE gas_phase 1
REACTION_TEMPERATURE
tc
REACTION_PRESSURE
p
END

You could also use REACTION in place of GAS_PHASE to add specified moles of gases to the reaction calculation.
Logged

  • Print
Pages: [1]   Go Up
« previous next »
  • PhreeqcUsers Discussion Forum »
  • Processes »
  • Dissolution and precipitation »
  • Gas content deep water
 

  • SMF 2.0.19 | SMF © 2021, Simple Machines | Terms and Policies
  • XHTML
  • RSS
  • WAP2