TITLE DATABASE C:\Users\ErdincCosgun\Documents\Projects\Databases\carbfix_2022.datTITLE TESTING KINETICS OF SPECIFIC SOLIDSTITLE 100 CELLS, 1CM HIGHTITLE FLOW-THROUGH TEST, 3 LITRETITLE === FULL ANTIMAGNETIC SUITE ===TITLE KARDEMIR PROCESS WATER MEAN VALUESTITLE REDOX CONTROLLED BY IRON SPECIESTITLE CHEMICAL SPECIATIONTITLE PHASES FROM Carbfix2022TITLE CALCITE DISSOLVES AS KINETIC PHASETITLE CALCITE PRECIPITATION AS EQUILIBRIUM PHASETITLE CO2 INJECTED FROM DAC 50% TO SOLUTION, log(0.5):-0.301TITLE Li ADDED IN TRACE TO KARDEMIR SUPPLIED WATERPHASES # Minerals, Directly taken from Carbfix2022.dat PHASES.Calcite_diss # Calcite that dissolves only. Alphanumeric name of phase; no spaces are allowed. CaCO3 + H+ = Ca+2 + HCO3- # Dissolution reaction log_k 1.8487 # Log K at 25 ?C for the reaction -delta_H -25.7149 kJ/mol # Enthalpy of reaction at 25 ?C for the reaction# deltafH -288.552 kcal/mol -analytic -1.4978e2 -4.8370e-2 4.8974e3 6.0458e1 7.6464e1 # Identifier for coefficients for an analytical expression for the temperature dependence of log K.# Range 0-350 -Vm 36.934 # molar_volume, the molecular weight divided by the density of the solid at 25 ?C. Ex: Molecular Weight/Mass (g/mole)=100.09, Density (g/ml or g/cm3)= 2.71 therfore, Vm= 100.09 / 2.71 = 36.934# Extrapol supcrt92# Ref HDN+78Calcite_ppt # Calcite that percipitates only CaCO3 + H+ = Ca+2 + HCO3- log_k 1.8487 -delta_H -25.7149 kJ/mol# deltafH -288.552 kcal/mol -analytic -1.4978e2 -4.8370e-2 4.8974e3 6.0458e1 7.6464e1# Range 0-350 -Vm 36.934 # molar_volume, the molecular weight divided by the density of the solid at 25 ?C. Ex: Molecular Weight/Mass (g/mole)=100.09, Density (g/ml or g/cm3)= 2.71 therfore, Vm= 100.09 / 2.71 = 36.934# Extrapol supcrt92# Ref HDN+78Brucite Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O log_k 16.2980 -delta_H -111.34 kJ/mol# deltafH -221.39 kcal/mol -analytic -1.0280e2 -1.9759e-2 9.0180e3 3.8282e1 1.4075e2# Range 0-350 -Vm 24.63 # molar_volume, the molecular weight divided by the density of the solid at 25 ?C. Ex: Molecular Weight/Mass (g/mole)=58.32, Density (g/ml or g/cm3)= 2.39 therfore, Vm= 58.32 / 2.39 = 24.40# Extrapol supcrt92# Ref HDN+78Larnite Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O log_k 38.4665 -delta_H -227.061 kJ/mol# deltafH -551.74 kcal/mol -analytic 2.6900e1 -2.1833e-3 1.0900e4 -9.5257 -7.2537e4# Range 0-300 -Vm 51.6 # HDN+78 # molar_volume, the molecular weight divided by the density of the solid at 25 ?C. Ex: Molecular Weight/Mass (g/mole)=172.24, Density (g/ml or g/cm3)= 3.28 therfore, Vm= 172.24 / 3.28 = 52.512# Extrapol Cp integration# Ref 82sar/barPortlandite Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O log_k 22.5552 -delta_H -128.686 kJ/mol# deltafH -986.074 kJ/mol -analytic -8.3848e1 -1.8373e-2 9.3154e3 3.2584e1 1.4538e2# Range 0-300 -Vm 33.056 # thermo.com.V8.R6+.tdat # molar_volume, the molecular weight divided by the density of the solid at 25 ?C. Ex: Molecular Weight/Mass (g/mole)=74.09, Density (g/ml or g/cm3)= 2.23 therfore, Vm= 74.09 / 2.23 = 33.224# Extrapol Cp integration# Ref RHF79# All other solids are defined in the chosen databaseSOLUTION 1 Kardemir Process/grid water # Directly taken from KARDEMIR Steel Manufacturer Plant. Define the composition of an aqueous solution. Speciate an analysis, calculate saturation indices. temp 25 # temperature in degrees Celcius, default = 25 C, Kardemir 25C pH 8.25 # +-0.1,default pH = 7, Kardemir 8.5 pe 4 # pe = -log(electron activity), default = 4. redox pe # reduction-oxidation reactions units ppm # same as mg/l, default units ppm, mmol/kg water density 1 # density, default = 1 kg/L, Kardemir 1 Ca 160 # +-0.1,total dissolved Ca, Kardemir 140-180 #Mg 3.4 # +-0.1,total dissolved Mg # Speciate that can be in grid water. No presence of Mg in Kardemir water #N(5) 0.84 # 0.84% ppm or mg/l of Nitrogen # Speciate that can be in grid water. No presence of N(5) in Kardemir water N(-3) 0.35 # Kardemir NH3 0.2-0.5 #Na 22 # 11-33 mg/l,total dissolved Na # Speciate that can be in grid water. No presence of Na in Kardemir water #K 0.82 # total dissolved K # Speciate that can be in grid water. No presence of K in Kardemir water P 0.22 # 0.3% ppm or mg/l of Phosforous, Kardemir P2O5 0.15-0.30 Fe(2) 0.25 # total dissolved Fe,generally <0.01, Kardemir 0.2-0.3, assumed all to be as ferrous Fe(3) 1e-9 # ferric iron assumed as present in negligible quantities Alkalinity 240 # 30-400ppm reasonable range alkalinity for domestic drinking water,low alkalinity 0.4- 0.8, Kardemir 210-270 CaCo3 C(4) 4.620e-03 mol/kgs # equivalent of Alkalinity 240 and pH 8.25 Cl 85 charge # total dissolved Cl, Kardemir 50-120. Charged balanced. S(6) 70 # ppm or mg/l of Sulfate, total dissolved Sulfate, Kardemir 60-80 #Li 6.941E-03 # Lithium (1umol/L) is a tracer for Process Water #Si 2.80855 # mg/L = 0.1 mmol/L -water 1 # kg water, default = 1 kgSAVE SOLUTION 1ENDSOLUTION 2 Median Black Sea rainfall concentrations from Alagha and Tunkel (2003). CO2(atm), O2(atm) added. Chloride charge balance temp 25 pH 5.15 pe 4 redox pe units ppm density 1 Al 3.37 Ca 1.8 Cl 1.01 charge # adapt Cl to obtain charge balance C(4) 1 CO2(g) -3.373 # equilibrium with atmospheric CO2 Fe 2.82 K 1.72 Mg 0.88 Mn 0.07 N(-3) 0.56 N(5) 1.5 Na 2 S(6) 2.52 O(0) 0.01 O2(g) -0.678 # equilibrium with atmospheric O2 -water 1 # kgENDEQUILIBRIUM_PHASES 1-100# Equilibrate SOLUTION 1 water with calcite precipitation# Brucite 0 4.733 dissolve_only # 4.733 (mol_mineral/L_pores)calculated. PHREEQC output assigns this value (4.733 )to each cell rather than the total depth of the core therfore dividing the moles of mineral by the number of cells is required, 4.733/100=0.04733 cells will give mols /cell.See supporting document# Calcite_diss 0 9.49 dissolve_only # Slag calcite dissolves, 9.49 (mol_mineral/L_pores)calculated. PHREEQC output assigns this value (9.49 )to each cell rather than the total depth of the core therfore dividing the moles of mineral by the number of cells is required, 9.49/100=0.0949 cells will give mols /cell.See supporting document Calcite_ppt 0 0 # Switch on calcite as a phase that can precipitate within days# Larnite 0 9.87 dissolve_only # 9.87 (mol_mineral/L_pores)calculated. PHREEQC output assigns this value (9.87 )to each cell rather than the total depth of the core therfore dividing the moles of mineral by the number of cells is required, 9.87/100=0.0987 cells will give mols /cell.See supporting document# Portlandite 0 14.43 dissolve_only # 14.43 (mol_mineral/L_pores)calculated. PHREEQC output assigns this value (14.43 )to each cell rather than the total depth of the core therfore dividing the moles of mineral by the number of cells is required, 14.43/100=0.1443 cells will give mols /cell.See supporting documentENDMIX 1 Combine rainwater with (process/grid water + DAC) 1 0.88 # 1-(Rainfall_rate/(Rainfall_rate+Procwtr_rate), use fraction 0.88 of solution 1 2 0.12 # 1-(Procwtr_rate/(Rainfall_rate+Procwtr_rate), use fraction 0.12 of solution 2USE equilibrium_phases 1SAVE SOLUTION 0ENDSOLUTION 1-101 Simulated mixture of (process water, DAC) and rainwater. temp 25 pH 6.963 pe 13.64 redox pe units mol/kgw density 1 -water 1 # kgC(4) 5.06E-03Ca 3.52E-03Cl 2.12E-03Fe 3.94E-06K 1.07E-06Mg 1.93E-06N 2.79E-05Na 1.07E-05P 6.26E-06S(6) 6.45E-04ENDREACTION 0# Remove / Evaporate water in steps. All solutions defined by SOLUTION input are scaled to have exactly 1 kg (approximately 55.5 mol) of water, unless -water identifier is used. H2O -1# Evaporate 11.1012 moles(= 0.2 * 55.506), 20% evaporation from pond in 4 step. # 11.1012 mole in 4 step. # The first step removes(-) 2.775e+00 moles of reaction (units are ?moles?) to the initial solution; the second step removes 5.551e+00 moles of reaction to the initial solution; the third 8.326e+00 moles; and the fourth 1.110e+01 moles; each reaction step begins with the same initial solution and removes only the amount of reaction specified. 11.1012 moles in 4 stepsEQUILIBRIUM_PHASES 101 DAC CO2 capture to 50% # BOTTOM CELL IS THE EFFLUENT FROM THE COLUMN, AS IT EXPERIENCES CONTACT WITH DAC-AMENDED AIR CO2(g) -0.301 10 # Calculated CO2 SI= -0.301, Amount of 10 mol available O2(g) -0.679 10 # Calculated O2 SI= -0.679, Amount of 10 mol available# N2(g) -0.107 10 Calcite_ppt 0 0SELECTED_OUTPUT 0 -file 230828_1125_Antimag_1cm_101cell_DAC_FlowThru_12pw-flush_dt-dx_Cal-KinEqu_CV5_Si_Init-solns20March2025V0_50pc500Days.tsv -ionic_strength true -distance true -totals Ca C(4) Si -molalities Ca+2 CaCO3 CO3-2 HCO3- CO2 -saturation_indices Calcite Larnite Brucite Portlandite CO2(g) -equilibrium_phases Calcite Calcite_ppt CO2(g) O2(g) -kinetic_reactants Calcite_diss Larnite Brucite PortlanditeENDUSER_PRINT10 p = SYS("equi", count , name$ , type$ , moles )20 FOR i = 1 to count30 dv = PHASE_VM(name$(i))*EQUI_DELTA(name$(i))40 delta_v = delta_v + dv50 PRINT name$(i), dv, " cm^3"60 NEXT i70 PRINT "Total change in mineral volume: ", delta_v, " cm^3"80 ENDRATES Calcite_diss # calcite dissolving only-start # Identifier marks the beginning of a Basic program by which the moles of reaction for a time subinterval are calculated. 5 REM Formula = CaCO3 10 REM Rate law modified from Zhang et al. 2019 20 REM Rate law from Marty et al 2015 30 REM unit should be J, m2, mol,kgw-1 and second-1 40 REM parm(1) is surface area in the unit of m2/kgw 50 REM calculation of surface area can be found in the note 60 REM M is current moles of minerals. M0 is the initial moles of minerals 70 REM parm(2) is a correction factor 80 REM Affinity ON 90 sr_mineral = SR("Calcite") # Calculate calcite saturation ratio 95 si_mineral = SI("Calcite") # Calculate calcite saturation index100 moles = 0110 REM rate=0 if mineral supersaturated in solution120 IF(M <= 0 OR sr_mineral > 1) THEN GOTO 320130 a0 = PARM(1)132 REM Volume is 1 litre solution135 v = 1140 temp = 1/TK145 REM acid solution parameters150 k_acid = 0160 eapp_acid = 0170 n_acid = 0175 REM neutral solution parameters180 k_neut = 6.59E+04190 eapp_neut = 66000195 REM base solution parameters200 k_base = 1.04E+09210 eapp_base = 67000220 n_base = 1.6225 REM Rate Law in TST form230 hplus = ACT("H+")240 r = 8.314250 r_acid = k_acid*EXP((-eapp_acid/r)*temp)*(hplus^n_acid)260 r_neut = k_neut*EXP((-eapp_neut/r)*temp)270 REM Base in terms of bicarbonate280 r_base = k_base*EXP((-eapp_base/r)*temp)*(ACT("HCO3-")^n_base)290 r_all = r_acid+r_neut+r_base300 rate = (a0/v)*(M/M0)^0.67*r_all*(1-sr_mineral)*PARM(2) # Calculate overall rate, factor310 moles = rate*TIME # Calculate moles of reaction over time interval given by TIME. Note that the multiplication of the rate by TIME must be present in one of the Basic lines.320 SAVE moles # Return moles of reaction for time subinterval with ?SAVE?. A SAVE statement must always be present in a rate program.-end # Identifier marks the end of a Basic program by which the number of moles of a reaction for a time subinterval is calculated. Brucite-start 5 REM Formula = Mg(OH)2 10 REM Rate parameters from Zhang et al. 2019 database 20 REM Rate law from Palandri and Kharaka (2004) 25 REM experimental condition range T=25-75C, pH=1-5 30 REM unit should be J, m2, mol,kgw-1 and second-1 40 REM parm(1) is surface area in the unit of m2/kgw 50 REM calculation of surface area can be found in the note 60 REM M is current moles of minerals. M0 is the initial moles of minerals 70 REM parm(2) is a correction factor 80 REM Affinity ON 90 sr_mineral = SR("Brucite") 95 si_mineral = SI("Brucite")100 moles = 0110 REM rate=0 if mineral supersaturated in solution120 IF(M <= 0 OR sr_mineral > 1) THEN GOTO 380130 a0 = PARM(1)140 REM Volume is 1 litre solution150 v = 1160 temp = 1/TK170 REM acid solution parameters180 k_acid = 4.00E+05190 eapp_acid = 59000200 n_acid = 0.500210 REM neutral solution parameters220 k_neut = 1.30E-01230 eapp_neut = 42000240 REM base solution parameters250 k_base = 0260 eapp_base = 0270 n_base = 0280 REM Rate Law in TST form290 hplus = ACT("H+")300 r = 8.314310 r_acid = k_acid*EXP((-eapp_acid/r)*temp)*(hplus^n_acid)320 r_neut = k_neut*EXP((-eapp_neut/r)*temp)340 r_base = k_base*EXP((-eapp_base/r)*temp)*(hplus^n_base)350 r_all = r_acid+r_neut+r_base360 rate = (a0/v)*(M/M0)^0.67*r_all*(1-sr_mineral)*PARM(2)370 moles = rate*TIME380 SAVE moles-end Larnite-start 5 REM Formula = Ca2SiO4 10 REM Rate parameters from Carbfix_2022 database 20 REM Rate law from Palandri and Kharaka (2004) 30 REM unit should be J, m2, mol,kgw-1 and second-1 40 REM parm(1) is surface area in the unit of m2/kgw 50 REM calculation of surface area can be found in the note 60 REM M is current moles of minerals. M0 is the initial moles of minerals 70 REM parm(2) is a correction factor 80 REM Affinity ON 90 sr_mineral = SR("Larnite") 95 si_mineral = SI("Larnite")100 moles = 0110 REM rate=0 if mineral supersaturated in solution120 IF(M <= 0 OR sr_mineral > 1) THEN GOTO 380130 a0 = PARM(1)140 REM Volume is 1 litre solution150 v = 1160 temp = 1/TK170 REM acid solution parameters180 k_acid = 5.25e8190 eapp_acid = 70400200 n_acid = 0.44210 REM neutral solution parameters220 k_neut = 0230 eapp_neut = 0240 REM base solution parameters250 k_base = 8.25e5260 eapp_base = 60900270 n_base = 0.22280 REM Rate Law in TST form290 hplus = ACT("H+")300 r = 8.314310 r_acid = k_acid*EXP((-eapp_acid/r)*temp)*(hplus^n_acid)320 r_neut = k_neut*EXP((-eapp_neut/r)*temp)330 IF(k_base = 0) THEN GOTO 350340 r_base = k_base*EXP((-eapp_base/r)*temp)*(hplus^n_base)350 r_all = r_acid+r_neut+r_base360 rate = (a0/v)*(M/M0)^0.67*r_all*(1-sr_mineral)*PARM(2)370 moles = rate*TIME375 REM PRINT "SI(Larnite) = " si_mineral ", Molar adjustment = " moles380 SAVE moles-end Portlandite-start 5 REM Formula = Ca(OH)2 10 REM Rate law modified from Zhang et al. 2019 20 REM Rate law from marty et al 2015 25 REM experimental condition range T=25-80C, pH=5-7 30 REM units should be J, m2, mol,kgw-1 and second-1 40 REM parm(1) is surface area in the unit of m2/kgw 50 REM calculation of surface area can be found in the note 60 REM M is current moles of minerals. M0 is the initial moles of minerals 70 REM parm(2) is a correction factor 80 REM Affinity ON 90 sr_mineral = SR("Portlandite") 95 si_mineral = SI("Portlandite")100 moles = 0110 REM rate=0 if mineral supersaturated in solution120 IF(M <= 0 OR sr_mineral > 1) THEN GOTO 320130 a0 = PARM(1)132 REM Volume is 1 litre solution135 v = 1140 temp = 1/TK145 REM acid solution parameters150 k_acid = 1.10E+10160 eapp_acid = 75000170 n_acid = 0.600175 REM neutral solution parameters180 k_neut = 3.04E+05190 eapp_neut = 75000195 REM base solution parameters200 k_base = 0210 eapp_base = 0220 n_base = 0225 REM Rate Law in TST form230 hplus = ACT("H+")240 r = 8.314250 r_acid = k_acid*EXP((-eapp_acid/r)*temp)*(hplus^n_acid)260 r_neut = k_neut*EXP((-eapp_neut/r)*temp)270 REM Base in terms of bicarbonate280 r_base = k_base*EXP((-eapp_base/r)*temp)*(ACT("OH-")^n_base)290 r_all = r_acid+r_neut+r_base300 rate = (a0/v)*(M/M0)^0.67*r_all*(1-sr_mineral)*PARM(2)310 moles = rate*TIME320 SAVE moles-endkin_HCO3-start10 REM20 kin_ca=1*KIN_DELTA("Portlandite")+2*KIN_DELTA("Larnite")+0*KIN_DELTA("Brucite")+(0.5)*KIN_DELTA("Calcite_diss")30 kin_mg=0*KIN_DELTA("Portlandite")+0*KIN_DELTA("Larnite")+1*KIN_DELTA("Brucite")+0*KIN_DELTA("Calcite_diss")60 moles = -2*(kin_ca+kin_mg)70 print kin_ca, kin_mg, moles320 SAVE moles-endKINETICS 1-100Portlandite -formula Ca(OH)2 1 -m 0.1443 # 14.43/100 cells = 0.1443 cells will give mols /cell. Initial moles of reactant. Mass conc port vs pores/ Molecular-mass_port -m0 0.1443 # Default is equal to initial moles -parms 2.303 1 # Bulk area * Area% Port -tol 1e-08 # Default is 1?10-8 molLarnite -formula Ca2SiO4 1 -m 0.0987 # 9.87/100 cells = 0.0987 cells will give mols /cell -m0 0.0987 -parms 2.499 1 -tol 1e-08Calcite_diss -formula CaCO3 1 -m 0.0949 # 9.49/100 cells = 0.0949 cells will give mols /cell -m0 0.0949 -parms 1.682 1 -tol 1e-08Brucite -formula Mg(OH)2 1 -m 0.04733 # 4.733/100 cells = 0.04733 cells will give mols /cell -m0 0.04733 -parms 0.556 1 -tol 1e-08-steps 1-step_divide 0.1-runge_kutta 6-bad_step_max 500-cvode true-cvode_steps 200-cvode_order 5ENDUSE SOLUTION 0USE REACTION 0USE equilibrium_phases 101USE KINETICS 1SAVE equilibrium_phases 1-10SAVE solution 1-10TRANSPORT -cells 101 # 100 cells slag heap, last cell closed pond (1 litre) # -shifts 303 # 3 passes of pore water through the slag heap -shifts 1245 # 12.326 passes of pore water through the slag heap # -shifts 101 # 1 passes of pore water through the slag heap -lengths 0.01 # 1cm cells -time_step 34722.2 # seconds retention time in cells - Antimagnetic = 0.401 days. Shift (101) x Timestep(34722.2) = 3506942.2 sec = 3506942.2 /60/ 60/ 24 = The total time of the simulation (40.5896 days).Shift (303) x Timestep(34722.2) = 10520826.6 sec = 10520826.6/60/ 60/ 24 = The total time of the simulation (121.768 days). # Shift (1245) x Timestep(34722.2) = 43200000sec = 43200000 /60/ 60/ 24 = The total time of the simulation (500 days) -print_cells 1, 100-101 # -print_cells 10-11 -print_frequency 1245 # Print only at end # -print_frequency 33 # Print only at endUSER_PUNCH 1 # This keyword data block is used to define Basic programs that print user-defined quantities to the selected-output file. Any Basic ?PUNCH? statement will write to the selected-output file. -headings kin_hco3 Pore_vol # Cum-C-heading -start 7 REM IF(CELL_NO < 101) THEN GOTO 10010 IF (TOTAL_TIME = 0) THEN PUT(0,1)20 kin_ca=1*KIN_DELTA("Portlandite")+2*KIN_DELTA("Larnite")+0*KIN_DELTA("Brucite")+(0.5)*KIN_DELTA("Calcite_diss")30 kin_mg=0*KIN_DELTA("Portlandite")+0*KIN_DELTA("Larnite")+1*KIN_DELTA("Brucite")+0*KIN_DELTA("Calcite_diss")60 kin_hco3 = -2*(kin_ca+kin_mg)65 PUT(GET(1)+kin_hco3,1)67 cum_c = GET(1)68 PUNCH kin_hco3#70 PUNCH cum_c75 REM punch pore volumes, no_cells = 10077 no_cells = 10080 PUNCH (STEP_NO + .5) / no_cells100 REM END -endSELECTED_OUTPUT 1 -file 230828_1125_Antimag_1cm_101cell_DAC_FlowThru_12pw-flush_dt-dx_Cal-KinEqu_CV5_Si_adv-react20March2025V0_50pc500Days.tsv -ionic_strength true -distance true -totals Li Ca C(4) Si # Lithium is a tracer for Process Water -molalities Ca+2 CaCO3 CO3-2 HCO3- CO2 -saturation_indices Calcite Larnite Brucite Portlandite CO2(g) -equilibrium_phases Calcite Calcite_ppt CO2(g) O2(g) -kinetic_reactants Calcite_diss Larnite Brucite Portlandite kin_HCO3END
TITLE DATABASE C:\Users\ErdincCosgun\Documents\Projects\Databases\carbfix_2022.datTITLE TESTING KINETICS OF SPECIFIC SOLIDSTITLE 100 CELLS, 1CM HIGHTITLE FLOW-THROUGH TEST, 3 LITRETITLE === FULL ANTIMAGNETIC SUITE ===TITLE KARDEMIR PROCESS WATER MEAN VALUESTITLE REDOX CONTROLLED BY IRON SPECIESTITLE CHEMICAL SPECIATIONTITLE PHASES FROM Carbfix2022TITLE CALCITE DISSOLVES AS KINETIC PHASETITLE CALCITE PRECIPITATION AS EQUILIBRIUM PHASETITLE CO2 INJECTED FROM DAC 50% TO SOLUTION, log(0.5):-0.301TITLE Li ADDED IN TRACE TO KARDEMIR SUPPLIED WATERRATES Calcite_diss # calcite dissolving only-start # Identifier marks the beginning of a Basic program by which the moles of reaction for a time subinterval are calculated. 5 REM Formula = CaCO3 10 REM Rate law modified from Zhang et al. 2019 20 REM Rate law from Marty et al 2015 30 REM unit should be J, m2, mol,kgw-1 and second-1 40 REM parm(1) is surface area in the unit of m2/kgw 50 REM calculation of surface area can be found in the note 60 REM M is current moles of minerals. M0 is the initial moles of minerals 70 REM parm(2) is a correction factor 80 REM Affinity ON 90 sr_mineral = SR("Calcite") # Calculate calcite saturation ratio 95 si_mineral = SI("Calcite") # Calculate calcite saturation index100 moles = 0110 REM rate=0 if mineral supersaturated in solution120 IF(M <= 0 OR sr_mineral > 1) THEN GOTO 320130 a0 = PARM(1)132 REM Volume is 1 litre solution135 v = 1140 temp = 1/TK145 REM acid solution parameters150 k_acid = 0160 eapp_acid = 0170 n_acid = 0175 REM neutral solution parameters180 k_neut = 6.59E+04190 eapp_neut = 66000195 REM base solution parameters200 k_base = 1.04E+09210 eapp_base = 67000220 n_base = 1.6225 REM Rate Law in TST form230 hplus = ACT("H+")240 r = 8.314250 r_acid = k_acid*EXP((-eapp_acid/r)*temp)*(hplus^n_acid)260 r_neut = k_neut*EXP((-eapp_neut/r)*temp)270 REM Base in terms of bicarbonate280 r_base = k_base*EXP((-eapp_base/r)*temp)*(ACT("HCO3-")^n_base)290 r_all = r_acid+r_neut+r_base300 rate = (a0/v)*(M/M0)^0.67*r_all*(1-sr_mineral)*PARM(2) # Calculate overall rate, factor310 moles = rate*TIME # Calculate moles of reaction over time interval given by TIME. Note that the multiplication of the rate by TIME must be present in one of the Basic lines.320 SAVE moles # Return moles of reaction for time subinterval with ?SAVE?. A SAVE statement must always be present in a rate program.-end # Identifier marks the end of a Basic program by which the number of moles of a reaction for a time subinterval is calculated. Brucite-start 5 REM Formula = Mg(OH)2 10 REM Rate parameters from Zhang et al. 2019 database 20 REM Rate law from Palandri and Kharaka (2004) 25 REM experimental condition range T=25-75C, pH=1-5 30 REM unit should be J, m2, mol,kgw-1 and second-1 40 REM parm(1) is surface area in the unit of m2/kgw 50 REM calculation of surface area can be found in the note 60 REM M is current moles of minerals. M0 is the initial moles of minerals 70 REM parm(2) is a correction factor 80 REM Affinity ON 90 sr_mineral = SR("Brucite") 95 si_mineral = SI("Brucite")100 moles = 0110 REM rate=0 if mineral supersaturated in solution120 IF(M <= 0 OR sr_mineral > 1) THEN GOTO 380130 a0 = PARM(1)140 REM Volume is 1 litre solution150 v = 1160 temp = 1/TK170 REM acid solution parameters180 k_acid = 4.00E+05190 eapp_acid = 59000200 n_acid = 0.500210 REM neutral solution parameters220 k_neut = 1.30E-01230 eapp_neut = 42000240 REM base solution parameters250 k_base = 0260 eapp_base = 0270 n_base = 0280 REM Rate Law in TST form290 hplus = ACT("H+")300 r = 8.314310 r_acid = k_acid*EXP((-eapp_acid/r)*temp)*(hplus^n_acid)320 r_neut = k_neut*EXP((-eapp_neut/r)*temp)340 r_base = k_base*EXP((-eapp_base/r)*temp)*(hplus^n_base)350 r_all = r_acid+r_neut+r_base360 rate = (a0/v)*(M/M0)^0.67*r_all*(1-sr_mineral)*PARM(2)370 moles = rate*TIME380 SAVE moles-end Larnite-start 5 REM Formula = Ca2SiO4 10 REM Rate parameters from Carbfix_2022 database 20 REM Rate law from Palandri and Kharaka (2004) 30 REM unit should be J, m2, mol,kgw-1 and second-1 40 REM parm(1) is surface area in the unit of m2/kgw 50 REM calculation of surface area can be found in the note 60 REM M is current moles of minerals. M0 is the initial moles of minerals 70 REM parm(2) is a correction factor 80 REM Affinity ON 90 sr_mineral = SR("Larnite") 95 si_mineral = SI("Larnite")100 moles = 0110 REM rate=0 if mineral supersaturated in solution120 IF(M <= 0 OR sr_mineral > 1) THEN GOTO 380130 a0 = PARM(1)140 REM Volume is 1 litre solution150 v = 1160 temp = 1/TK170 REM acid solution parameters180 k_acid = 5.25e8190 eapp_acid = 70400200 n_acid = 0.44210 REM neutral solution parameters220 k_neut = 0230 eapp_neut = 0240 REM base solution parameters250 k_base = 8.25e5260 eapp_base = 60900270 n_base = 0.22280 REM Rate Law in TST form290 hplus = ACT("H+")300 r = 8.314310 r_acid = k_acid*EXP((-eapp_acid/r)*temp)*(hplus^n_acid)320 r_neut = k_neut*EXP((-eapp_neut/r)*temp)330 IF(k_base = 0) THEN GOTO 350340 r_base = k_base*EXP((-eapp_base/r)*temp)*(hplus^n_base)350 r_all = r_acid+r_neut+r_base360 rate = (a0/v)*(M/M0)^0.67*r_all*(1-sr_mineral)*PARM(2)370 moles = rate*TIME375 REM PRINT "SI(Larnite) = " si_mineral ", Molar adjustment = " moles380 SAVE moles-end Portlandite-start 5 REM Formula = Ca(OH)2 10 REM Rate law modified from Zhang et al. 2019 20 REM Rate law from marty et al 2015 25 REM experimental condition range T=25-80C, pH=5-7 30 REM units should be J, m2, mol,kgw-1 and second-1 40 REM parm(1) is surface area in the unit of m2/kgw 50 REM calculation of surface area can be found in the note 60 REM M is current moles of minerals. M0 is the initial moles of minerals 70 REM parm(2) is a correction factor 80 REM Affinity ON 90 sr_mineral = SR("Portlandite") 95 si_mineral = SI("Portlandite")100 moles = 0110 REM rate=0 if mineral supersaturated in solution120 IF(M <= 0 OR sr_mineral > 1) THEN GOTO 320130 a0 = PARM(1)132 REM Volume is 1 litre solution135 v = 1140 temp = 1/TK145 REM acid solution parameters150 k_acid = 1.10E+10160 eapp_acid = 75000170 n_acid = 0.600175 REM neutral solution parameters180 k_neut = 3.04E+05190 eapp_neut = 75000195 REM base solution parameters200 k_base = 0210 eapp_base = 0220 n_base = 0225 REM Rate Law in TST form230 hplus = ACT("H+")240 r = 8.314250 r_acid = k_acid*EXP((-eapp_acid/r)*temp)*(hplus^n_acid)260 r_neut = k_neut*EXP((-eapp_neut/r)*temp)270 REM Base in terms of bicarbonate280 r_base = k_base*EXP((-eapp_base/r)*temp)*(ACT("OH-")^n_base)290 r_all = r_acid+r_neut+r_base300 rate = (a0/v)*(M/M0)^0.67*r_all*(1-sr_mineral)*PARM(2)310 moles = rate*TIME320 SAVE moles-endkin_HCO3-start10 REM20 kin_ca=1*KIN_DELTA("Portlandite")+2*KIN_DELTA("Larnite")+0*KIN_DELTA("Brucite")+(0.5)*KIN_DELTA("Calcite_diss")30 kin_mg=0*KIN_DELTA("Portlandite")+0*KIN_DELTA("Larnite")+1*KIN_DELTA("Brucite")+0*KIN_DELTA("Calcite_diss")60 moles = -2*(kin_ca+kin_mg)70 print kin_ca, kin_mg, moles320 SAVE moles-endPHASES # Minerals, Directly taken from Carbfix2022.dat PHASES.Calcite_diss # Calcite that dissolves only. Alphanumeric name of phase; no spaces are allowed. CaCO3 + H+ = Ca+2 + HCO3- # Dissolution reaction log_k 1.8487 # Log K at 25 ?C for the reaction -delta_H -25.7149 kJ/mol # Enthalpy of reaction at 25 ?C for the reaction# deltafH -288.552 kcal/mol -analytic -1.4978e2 -4.8370e-2 4.8974e3 6.0458e1 7.6464e1 # Identifier for coefficients for an analytical expression for the temperature dependence of log K.# Range 0-350 -Vm 36.934 # molar_volume, the molecular weight divided by the density of the solid at 25 ?C. Ex: Molecular Weight/Mass (g/mole)=100.09, Density (g/ml or g/cm3)= 2.71 therfore, Vm= 100.09 / 2.71 = 36.934# Extrapol supcrt92# Ref HDN+78Calcite_ppt # Calcite that percipitates only CaCO3 + H+ = Ca+2 + HCO3- log_k 1.8487 -delta_H -25.7149 kJ/mol# deltafH -288.552 kcal/mol -analytic -1.4978e2 -4.8370e-2 4.8974e3 6.0458e1 7.6464e1# Range 0-350 -Vm 36.934 # molar_volume, the molecular weight divided by the density of the solid at 25 ?C. Ex: Molecular Weight/Mass (g/mole)=100.09, Density (g/ml or g/cm3)= 2.71 therfore, Vm= 100.09 / 2.71 = 36.934# Extrapol supcrt92# Ref HDN+78Brucite Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O log_k 16.2980 -delta_H -111.34 kJ/mol# deltafH -221.39 kcal/mol -analytic -1.0280e2 -1.9759e-2 9.0180e3 3.8282e1 1.4075e2# Range 0-350 -Vm 24.63 # molar_volume, the molecular weight divided by the density of the solid at 25 ?C. Ex: Molecular Weight/Mass (g/mole)=58.32, Density (g/ml or g/cm3)= 2.39 therfore, Vm= 58.32 / 2.39 = 24.40# Extrapol supcrt92# Ref HDN+78Larnite Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O log_k 38.4665 -delta_H -227.061 kJ/mol# deltafH -551.74 kcal/mol -analytic 2.6900e1 -2.1833e-3 1.0900e4 -9.5257 -7.2537e4# Range 0-300 -Vm 51.6 # HDN+78 # molar_volume, the molecular weight divided by the density of the solid at 25 ?C. Ex: Molecular Weight/Mass (g/mole)=172.24, Density (g/ml or g/cm3)= 3.28 therfore, Vm= 172.24 / 3.28 = 52.512# Extrapol Cp integration# Ref 82sar/barPortlandite Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O log_k 22.5552 -delta_H -128.686 kJ/mol# deltafH -986.074 kJ/mol -analytic -8.3848e1 -1.8373e-2 9.3154e3 3.2584e1 1.4538e2# Range 0-300 -Vm 33.056 # thermo.com.V8.R6+.tdat # molar_volume, the molecular weight divided by the density of the solid at 25 ?C. Ex: Molecular Weight/Mass (g/mole)=74.09, Density (g/ml or g/cm3)= 2.23 therfore, Vm= 74.09 / 2.23 = 33.224# Extrapol Cp integration# Ref RHF79# All other solids are defined in the chosen databaseSOLUTION 1 Kardemir Process/grid water # Directly taken from KARDEMIR Steel Manufacturer Plant. Define the composition of an aqueous solution. Speciate an analysis, calculate saturation indices. temp 25 # temperature in degrees Celcius, default = 25 C, Kardemir 25C pH 8.25 # +-0.1,default pH = 7, Kardemir 8.5 pe 4 # pe = -log(electron activity), default = 4. redox pe # reduction-oxidation reactions units ppm # same as mg/l, default units ppm, mmol/kg water density 1 # density, default = 1 kg/L, Kardemir 1 Ca 160 # +-0.1,total dissolved Ca, Kardemir 140-180 #Mg 3.4 # +-0.1,total dissolved Mg # Speciate that can be in grid water. No presence of Mg in Kardemir water #N(5) 0.84 # 0.84% ppm or mg/l of Nitrogen # Speciate that can be in grid water. No presence of N(5) in Kardemir water N(-3) 0.35 # Kardemir NH3 0.2-0.5 #Na 22 # 11-33 mg/l,total dissolved Na # Speciate that can be in grid water. No presence of Na in Kardemir water #K 0.82 # total dissolved K # Speciate that can be in grid water. No presence of K in Kardemir water P 0.22 # 0.3% ppm or mg/l of Phosforous, Kardemir P2O5 0.15-0.30 Fe(2) 0.25 # total dissolved Fe,generally <0.01, Kardemir 0.2-0.3, assumed all to be as ferrous Fe(3) 1e-9 # ferric iron assumed as present in negligible quantities Alkalinity 240 # 30-400ppm reasonable range alkalinity for domestic drinking water,low alkalinity 0.4- 0.8, Kardemir 210-270 CaCo3 C(4) 4.620e-03 mol/kgs # equivalent of Alkalinity 240 and pH 8.25 Cl 85 charge # total dissolved Cl, Kardemir 50-120. Charged balanced. S(6) 70 # ppm or mg/l of Sulfate, total dissolved Sulfate, Kardemir 60-80 #Li 6.941E-03 # Lithium (1umol/L) is a tracer for Process Water #Si 2.80855 # mg/L = 0.1 mmol/L -water 1 # kg water, default = 1 kgENDSOLUTION 2 Median Black Sea rainfall concentrations from Alagha and Tunkel (2003). CO2(atm), O2(atm) added. Chloride charge balance temp 25 pH 5.15 pe 4 redox pe units ppm density 1 Al 3.37 Ca 1.8 Cl 1.01 charge # adapt Cl to obtain charge balance C(4) 1 CO2(g) -3.373 # equilibrium with atmospheric CO2 Fe 2.82 K 1.72 Mg 0.88 Mn 0.07 N(-3) 0.56 N(5) 1.5 Na 2 S(6) 2.52 O(0) 0.01 O2(g) -0.678 # equilibrium with atmospheric O2 -water 1 # kgENDEQUILIBRIUM_PHASES 1-100# Equilibrate SOLUTION 1 water with calcite precipitation# Brucite 0 4.733 dissolve_only # 4.733 (mol_mineral/L_pores)calculated. PHREEQC output assigns this value (4.733 )to each cell rather than the total depth of the core therfore dividing the moles of mineral by the number of cells is required, 4.733/100=0.04733 cells will give mols /cell.See supporting document# Calcite_diss 0 9.49 dissolve_only # Slag calcite dissolves, 9.49 (mol_mineral/L_pores)calculated. PHREEQC output assigns this value (9.49 )to each cell rather than the total depth of the core therfore dividing the moles of mineral by the number of cells is required, 9.49/100=0.0949 cells will give mols /cell.See supporting document Calcite_ppt 0 0 # Switch on calcite as a phase that can precipitate within days# Larnite 0 9.87 dissolve_only # 9.87 (mol_mineral/L_pores)calculated. PHREEQC output assigns this value (9.87 )to each cell rather than the total depth of the core therfore dividing the moles of mineral by the number of cells is required, 9.87/100=0.0987 cells will give mols /cell.See supporting document# Portlandite 0 14.43 dissolve_only # 14.43 (mol_mineral/L_pores)calculated. PHREEQC output assigns this value (14.43 )to each cell rather than the total depth of the core therfore dividing the moles of mineral by the number of cells is required, 14.43/100=0.1443 cells will give mols /cell.See supporting documentENDMIX 1 Combine rainwater with (process/grid water + DAC) 1 0.88 # 1-(Rainfall_rate/(Rainfall_rate+Procwtr_rate), use fraction 0.88 of solution 1 2 0.12 # 1-(Procwtr_rate/(Rainfall_rate+Procwtr_rate), use fraction 0.12 of solution 2USE equilibrium_phases 1SAVE SOLUTION 0ENDSOLUTION 1-101 Simulated mixture of (process water, DAC) and rainwater. temp 25 pH 6.963 pe 13.64 redox pe units mol/kgw density 1 -water 1 # kgC(4) 5.06E-03Ca 3.52E-03Cl 2.12E-03Fe 3.94E-06K 1.07E-06Mg 1.93E-06N 2.79E-05Na 1.07E-05P 6.26E-06S(6) 6.45E-04ENDREACTION 0# Remove / Evaporate water in steps. All solutions defined by SOLUTION input are scaled to have exactly 1 kg (approximately 55.5 mol) of water, unless -water identifier is used. H2O -1# Evaporate 11.1012 moles(= 0.2 * 55.506), 20% evaporation from pond in 4 step. # 11.1012 mole in 4 step. # The first step removes(-) 2.775e+00 moles of reaction (units are ?moles?) to the initial solution; the second step removes 5.551e+00 moles of reaction to the initial solution; the third 8.326e+00 moles; and the fourth 1.110e+01 moles; each reaction step begins with the same initial solution and removes only the amount of reaction specified. 11.1012 moles #in 4 stepsEQUILIBRIUM_PHASES 101 DAC CO2 capture to 50% # BOTTOM CELL IS THE EFFLUENT FROM THE COLUMN, AS IT EXPERIENCES CONTACT WITH DAC-AMENDED AIR CO2(g) -0.301 10 # Calculated CO2 SI= -0.301, Amount of 10 mol available O2(g) -0.679 10 # Calculated O2 SI= -0.679, Amount of 10 mol available# N2(g) -0.107 10 Calcite_ppt 0 0ENDKINETICS 1-100Portlandite -formula Ca(OH)2 1 -m 0.1443 # 14.43/100 cells = 0.1443 cells will give mols /cell. Initial moles of reactant. Mass conc port vs pores/ Molecular-mass_port -m0 0.1443 # Default is equal to initial moles -parms 2.303 1 # Bulk area * Area% Port -tol 1e-08 # Default is 1?10-8 molLarnite -formula Ca2SiO4 1 -m 0.0987 # 9.87/100 cells = 0.0987 cells will give mols /cell -m0 0.0987 -parms 2.499 1 -tol 1e-08Calcite_diss -formula CaCO3 1 -m 0.0949 # 9.49/100 cells = 0.0949 cells will give mols /cell -m0 0.0949 -parms 1.682 1 -tol 1e-08Brucite -formula Mg(OH)2 1 -m 0.04733 # 4.733/100 cells = 0.04733 cells will give mols /cell -m0 0.04733 -parms 0.556 1 -tol 1e-08-steps 1-step_divide 0.1-runge_kutta 6-bad_step_max 500-cvode true-cvode_steps 200-cvode_order 5ENDUSE SOLUTION 0USE REACTION 0USE equilibrium_phases 101USE KINETICS 1SAVE equilibrium_phases 1-10SAVE solution 1-10ENDTRANSPORT -cells 20 # 101 # 100 cells slag heap, last cell closed pond (1 litre) -shifts 5 # 1245 # 12.326 passes of pore water through the slag heap -lengths 0.01 # 1cm cells -time_step 34722.2 # seconds retention time in cells - Antimagnetic = 0.401 days. Shift (101) x Timestep(34722.2) = 3506942.2 sec = 3506942.2 /60/ 60/ 24 = The total time of the simulation (40.5896 days).Shift (303) x Timestep(34722.2) = 10520826.6 sec = 10520826.6/60/ 60/ 24 = The total time of the simulation (121.768 days). -print_cells 0-20 -punch_cells 1-20 -print_frequency 5 # 1245 # Print only at end -punch_frequency 5USER_GRAPH 1 -headings dist Portlandite Larnite Calcite Brucite H2O_kg -axis_titles "Distance" "SI" "Water, kg" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start 10 graph_x DIST 20 graph_y SI("Portlandite"), SI("Larnite"), SI("Calcite_diss"), SI("Brucite") 30 graph_sy TOT("water")100 END -endEND