TITLE Beaker Dissolution Using carbfix_kin.dat#the carbfix_kin database has predefined rates blocks within the databaseSOLUTION 1 Ocean_Water temp 70 pH 8.19 pe 10 redox pe units mol/l density 1 Mg 0.058 Si 4.9e-06 Ca 0.008 Fe 1.2e-07 Cl 0.54 CHARGE Na 0.28 C 0.0034 S(6) 0.027 K 0.0097 -water 1 # kg KINETICS 1 dissolution over ~40 dayForsterite -m0 0.32 -parms 0 40 0#Parm(1) = specifies if specific surface area is m2/g of rock (0) or m2 per kg of water (1)#Parm(2) = specifies the specific surface area either m2 or m2/kgw based on Parm(1)#Parm(3) = specifies how surface area changes during dissolution (only avaliable when Parm(1) = 0# (0) surface area changes linearly with moles of mineral present# (1) surface area changes according to the geometry of dissolving cubes or spheres Lizardite -m0 0.15 -parms 0 40 0-steps 3197000 in 7-cvode trueSAVE Solution 1RATES#note - in carbfix_kin.dat rate for forsterite is already defined#note - there is not rate block for lizardite so it is defined here#Dissolution parameters for Lizardite in Palandri and Kharaka 2004Lizardite -start1 name$ = "Lizardite"2 if (PARM(1) = 0) then goto 3 else goto 53 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)4 GOTO 10005 S = PARM(2)*TOT("water")##------------------Kinetic calculation---------------------## #Parameters1000 Aa =3.36e7# mol.m-2.s-11001 Ab =3.28e-03# mol.m-2.s-11002 Ea =75500# J/mol1003 Eb =56600# J/mol1004 R = 8.314 #J.deg-1.mol-11006 Sig = 1 1007 na = 0.81008 nb = 0. #Rate Equation2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S2002 rplusb = Ab* (exp(-Eb/ (R * Tk))) * S2009 rplus = rplusa + rplusb4000 rate = rplus * (1 - SR ("Lizardite")^(1/Sig))5000 moles = rate * time6000 save moles-endSELECTED_OUTPUT -file CC1-FT-144hrv3.sel -kinetic_reactants Forsterite Lizardite -saturation_indices Forsterite Lizardite -molalities Ca+2 Mg+2 -totals Mg SiUSER_GRAPH 1 -chart_title "ultramafic dissolution" -headings Lizardite pH -axis_titles Days "mol" -initial_solutions true -start10 PLOT_XY total_time/86400, KIN_DELTA("Lizardite"), color = RED, symbol = Square, symbol_size = 6, y-axis = 120 PLOT_XY total_time/86400, -la("H+"), color = Blue, symbol = Square, symbol_size = 6, y-axis = 2 -endUSER_GRAPH 2 -headings Mg -chart_title "ion concentration Mg" -axis_titles days "mmol" -initial_solution true -start10 graph_x total_time/8640020 graph_y TOTMOLE("Mg")*1000 -endUSER_GRAPH 3 -headings Si -chart_title "ion concentration Si" -axis_titles days "mmol" -initial_solution true -start10 graph_x total_time/8640020 graph_y TOTMOLE("Si")*1000 -end
TITLE Beaker Dissolution Using carbfix_kin.dat#the carbfix_kin database has predefined rates blocks within the databaseSOLUTION 1 Ocean_Water temp 70 pH 8.19 pe 10 redox pe units mol/l density 1 Mg 0.058 Si 4.9e-06 Ca 0.008 Fe 1.2e-07 Cl 0.54 CHARGE Na 0.28 C 0.0034 S(6) 0.027 K 0.0097 -water 1 # kg KINETICS 1 dissolution over ~40 day#Parm(1) = specifies if specific surface area is m2/g of rock (0) or m2 per kg of water (1)#Parm(2) = specifies the specific surface area either m2 or m2/kgw based on Parm(1)#Parm(3) = specifies how surface area changes during dissolution (only avaliable when Parm(1) = 0# (0) surface area changes linearly with moles of mineral present# (1) surface area changes according to the geometry of dissolving cubes or spheresForsterite -m0 0.32 -parms 0 10 0Lizardite -m0 0.15 -parms 0 10 0Brucite -m0 0.036 -parms 0 10 0-steps 3197000 in 7-cvode trueSAVE Solution 1RATES#note - in carbfix_kin.dat rate for forsterite is already defined#note - there is not rate block for lizardite so it is defined here#Dissolution parameters for Lizardite in Palandri and Kharaka 2004Forsterite #Mg2SiO4, M 140.692 g/mol -start1 name$ = "Forsterite"2 if (PARM(1) = 0) then goto 3 else goto 53 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)4 GOTO 10005 S = PARM(2)*TOT("water")##------------------Kinetic calculation---------------------## #Parameters1000 Aa =14.8e4# mol.m-2.s-11001 Ac =220# mol.m-2.s-11002 Ea =70400# J/mol1003 Ec =60900# J/mol1004 R = 8.314 #J.deg-1.mol-11006 Sig = 1 1007 na = 0.441008 nc = 0.22 #Rate Equation2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S2002 rplusc = Ac* (exp(-Ec/ (R * Tk)))* (act("H+")^nc) * S2009 rplus = rplusa + rplusc4000 rate = rplus * (1 - SR ("Forsterite")^(1/Sig))5000 moles = rate * time6000 save moles-endLizardite-start1 name$ = "Lizardite"2 if (PARM(1) = 0) then goto 3 else goto 53 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)4 GOTO 10005 S = PARM(2)*TOT("water")##------------------Kinetic calculation---------------------## #Parameters1000 Aa =3.36e7# mol.m-2.s-11001 Ab =3.28e-03# mol.m-2.s-11002 Ea =75500# J/mol1003 Eb =56600# J/mol1004 R = 8.314 #J.deg-1.mol-11006 Sig = 1 1007 na = 0.81008 nb = 0 #Rate Equation2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S2002 rplusb = Ab* (exp(-Eb/ (R * Tk))) * S2009 rplus = rplusa + rplusb4000 rate = rplus * (1 - SR ("Lizardite")^(1/Sig))5000 moles = rate * time6000 save moles-endBrucite-start1 name$ = "Brucite"2 if (PARM(1) = 0) then goto 3 else goto 53 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)4 GOTO 10005 S = PARM(2)*TOT("water")##------------------Kinetic calculation---------------------## #Parameters1000 Aa =4.04e05# mol.m-2.s-11001 Ab =1.31e-01# mol.m-2.s-11002 Ea =59000# J/mol1003 Eb =42000# J/mol1004 R = 8.314 #J.deg-1.mol-11006 Sig = 1 1007 na = 0.51008 nb = 0 #Rate Equation2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S2002 rplusb = Ab* (exp(-Eb/ (R * Tk))) * S2009 rplus = rplusa + rplusb4000 rate = rplus * (1 - SR ("Brucite")^(1/Sig))5000 moles = rate * time6000 save moles-endSELECTED_OUTPUT -file 2_CC1-FT-T70_SA10.sel -kinetic_reactants Forsterite Lizardite Brucite -saturation_indices Forsterite Lizardite Brucite -molalities Ca+2 Mg+2 -totals Mg Si CaUSER_GRAPH 1 -chart_title "ultramafic dissolution" -headings Forsterite pH -axis_titles Days "mol" -initial_solutions true -start10 PLOT_XY total_time/86400, KIN_DELTA("Forsterite"), color = RED, symbol = Square, symbol_size = 6, y-axis = 120 PLOT_XY total_time/86400, -la("H+"), color = Blue, symbol = Square, symbol_size = 6, y-axis = 2 -endUSER_GRAPH 2 -headings Mg -chart_title "ion concentration Mg" -axis_titles days "mmol" -initial_solution true -start10 graph_x total_time/8640020 graph_y TOTMOLE("Mg")*1000 -end
TITLE Beaker Dissolution Using carbfix_kin.dat#the carbfix_kin database has predefined rates blocks within the databaseSOLUTION 1 Ocean_Water temp 55 pH 8.19 pe 8.451 redox pe units mol/l density 1.02 Mg 0.058 Si 4.9e-06 Ca 0.008 Fe 1.2e-07 Cl 0.54 Na 0.28 C 0.0034 S(6) 0.027 K 0.0097 -water 1 # kgEQUILIBRIUM_PHASES 1 CO2(g) -3.5 1 KINETICS 1 dissolution over ~40 day#Parm(1) = specifies if specific surface area is m2/g of rock (0) or m2 per kg of water (1)#Parm(2) = specifies the specific surface area either m2 or m2/kgw based on Parm(1)#Parm(3) = specifies how surface area changes during dissolution (only avaliable when Parm(1) = 0# (0) surface area changes linearly with moles of mineral present# (1) surface area changes according to the geometry of dissolving cubes or spheresForsterite -m0 0.32 -parms 0 25 0Lizardite -m0 0.15 -parms 0 25 0-steps 3197000 in 7-cvode trueSAVE Solution 1RATES#note - in carbfix_kin.dat rate for forsterite is already defined#note - there is not rate block for lizardite so it is defined here#Dissolution parameters for Lizardite in Palandri and Kharaka 2004Forsterite #Mg2SiO4, M 140.692 g/mol -start1 name$ = "Forsterite"2 if (PARM(1) = 0) then goto 3 else goto 53 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)4 GOTO 10005 S = PARM(2)*TOT("water")##------------------Kinetic calculation---------------------## #Parameters1000 Aa =14.8e4# mol.m-2.s-11001 Ac =220# mol.m-2.s-11002 Ea =70400# J/mol1003 Ec =60900# J/mol1004 R = 8.314 #J.deg-1.mol-11006 Sig = 1 1007 na = 0.441008 nc = 0.22 #Rate Equation2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S2002 rplusc = Ac* (exp(-Ec/ (R * Tk)))* (act("H+")^nc) * S2009 rplus = rplusa + rplusc4000 rate = rplus * (1 - SR ("Forsterite")^(1/Sig))5000 moles = rate * time6000 save moles-endLizardite-start1 name$ = "Lizardite"2 if (PARM(1) = 0) then goto 3 else goto 53 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)4 GOTO 10005 S = PARM(2)*TOT("water")##------------------Kinetic calculation---------------------## #Parameters1000 Aa =3.36e7# mol.m-2.s-11001 Ab =3.28e-03# mol.m-2.s-11002 Ea =75500# J/mol1003 Eb =56600# J/mol1004 R = 8.314 #J.deg-1.mol-11006 Sig = 1 1007 na = 0.81008 nb = 0 #Rate Equation2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S2002 rplusb = Ab* (exp(-Eb/ (R * Tk))) * S2009 rplus = rplusa + rplusb4000 rate = rplus * (1 - SR ("Lizardite")^(1/Sig))5000 moles = rate * time6000 save moles-endBrucite-start1 name$ = "Brucite"2 if (PARM(1) = 0) then goto 3 else goto 53 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)4 GOTO 10005 S = PARM(2)*TOT("water")##------------------Kinetic calculation---------------------## #Parameters1000 Aa =4.04e05# mol.m-2.s-11001 Ab =1.31e-01# mol.m-2.s-11002 Ea =59000# J/mol1003 Eb =42000# J/mol1004 R = 8.314 #J.deg-1.mol-11006 Sig = 1 1007 na = 0.51008 nb = 0 #Rate Equation2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S2002 rplusb = Ab* (exp(-Eb/ (R * Tk))) * S2009 rplus = rplusa + rplusb4000 rate = rplus * (1 - SR ("Brucite")^(1/Sig))5000 moles = rate * time6000 save moles-endSELECTED_OUTPUT -file 11_CC1-FT-T55_SA25.sel -kinetic_reactants Forsterite Lizardite -saturation_indices Forsterite Lizardite -molalities Ca+2 Mg+2 -totals Mg Si CaUSER_GRAPH 1 -chart_title "ultramafic dissolution" -headings Forsterite pH -axis_titles Days "mol" -initial_solutions true -start10 PLOT_XY total_time/86400, KIN_DELTA("Forsterite"), color = RED, symbol = Square, symbol_size = 6, y-axis = 120 PLOT_XY total_time/86400, -la("H+"), color = Blue, symbol = Square, symbol_size = 6, y-axis = 2 -endUSER_GRAPH 2 -headings Mg -chart_title "ion concentration Mg" -axis_titles days "mmol" -initial_solution true -start10 graph_x total_time/8640020 graph_y TOTMOLE("Mg")*1000 -end
SURFACE_MASTER_SPECIES Hfo_s Hfo_sOH Hfo_w Hfo_wOHSURFACE_SPECIES# All surface data from# Dzombak and Morel, 1990### Acid-base data from table 5.7## strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH log_k 0.0 Hfo_sOH + H+ = Hfo_sOH2+ log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ log_k -8.93 # = -pKa2,int# weak binding site--Hfo_w Hfo_wOH = Hfo_wOH log_k 0.0 Hfo_wOH + H+ = Hfo_wOH2+ log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ log_k -8.93 # = -pKa2,int################################################ CATIONS ################################################## Cations from table 10.1 or 10.5## Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85# Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ log_k -6.58 Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ log_k -17.6# Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ log_k -7.2 # table 10.5## Cations from table 10.2## Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ log_k -2.91# Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ log_k -1.99# Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ log_k 0.6 # table 10.5# Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ log_k 0.3 # table 10.5## Derived constants table 10.5## Magnesium Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ log_k -4.6# Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ log_k -3.5 # table 10.5# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ log_k -0.95# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ log_k -2.98 Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ log_k -11.55################################################ ANIONS ################################################## Anions from table 10.6## Phosphate Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O log_k 31.29 Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O log_k 17.72## Anions from table 10.7## Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O log_k 0.62## Anions from table 10.8## Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 log_k 0.79## Derived constants table 10.10# Hfo_wOH + F- + H+ = Hfo_wF + H2O log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- log_k 1.6## Carbonate: Van Geen et al., 1994 reoptimized for D&M model# Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O log_k 12.56 Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O log_k 20.62
ERROR: Elements in species have not been tabulated, Ba+2.ERROR: Reaction for species has not been defined, Ba+2.ERROR: Elements in species have not been tabulated, Cd+2.ERROR: Reaction for species has not been defined, Cd+2.ERROR: Elements in species have not been tabulated, H3BO3.ERROR: Reaction for species has not been defined, H3BO3.ERROR: Elements in species have not been tabulated, Pb+2.ERROR: Reaction for species has not been defined, Pb+2.ERROR: Elements in species have not been tabulated, Sr+2.ERROR: Reaction for species has not been defined, Sr+2.ERROR: Calculations terminating due to input errors.
TITLE Beaker Dissolution Using carbfix_kin.dat#the carbfix_kin database has predefined rates blocks within the databaseSOLUTION 1 Ocean_Water temp 55 pH 8.19 pe 8.451 redox pe units mol/l density 1.02 Alkalinity 180 mg/L as HCO3 C 0.0034 Ca 0.008 Cl 0.54 Fe 1.2e-07 K 0.0097 Mg 0.058 Na 0.28 S(6) 0.027 Si 4.9e-06 -water 1 # kgKINETICS 1 dissolution over ~40 day#Parm(1) = specifies if specific surface area is m2/g of rock (0) or m2 per kg of water (1)#Parm(2) = specifies the specific surface area either m2 or m2/kgw based on Parm(1)#Parm(3) = specifies how surface area changes during dissolution (only avaliable when Parm(1) = 0# (0) surface area changes linearly with moles of mineral present# (1) surface area changes according to the geometry of dissolving cubes or spheresForsterite -m0 0.32 -parms 0 25 0Lizardite -m0 0.15 -parms 0 25 0-steps 3197000 in 7-cvode true#----------------------------SURFACE-----------------------------#SURFACE_SPECIES Hfo_sOH + H+ = Hfo_sOH2+ log_k 7.18SURFACE 1 Hfo_sOH 1e-3 25 0.1SAVE Solution 1RATES#note - in carbfix_kin.dat rate for forsterite is already defined#note - there is not rate block for lizardite so it is defined here#Dissolution parameters for Lizardite in Palandri and Kharaka 2004Forsterite #Mg2SiO4, M 140.692 g/mol -start1 name$ = "Forsterite"2 if (PARM(1) = 0) then goto 3 else goto 53 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)4 GOTO 10005 S = PARM(2)*TOT("water")##------------------Kinetic calculation---------------------## #Parameters1000 Aa =14.8e4# mol.m-2.s-11001 Ac =220# mol.m-2.s-11002 Ea =70400# J/mol1003 Ec =60900# J/mol1004 R = 8.314 #J.deg-1.mol-11006 Sig = 1 1007 na = 0.441008 nc = 0.22 #Rate Equation2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S2002 rplusc = Ac* (exp(-Ec/ (R * Tk)))* (act("H+")^nc) * S2009 rplus = rplusa + rplusc4000 rate = rplus * (1 - SR ("Forsterite")^(1/Sig))5000 moles = rate * time6000 save moles-endLizardite-start1 name$ = "Lizardite"2 if (PARM(1) = 0) then goto 3 else goto 53 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)4 GOTO 10005 S = PARM(2)*TOT("water")##------------------Kinetic calculation---------------------## #Parameters1000 Aa =3.36e7# mol.m-2.s-11001 Ab =3.28e-03# mol.m-2.s-11002 Ea =75500# J/mol1003 Eb =56600# J/mol1004 R = 8.314 #J.deg-1.mol-11006 Sig = 1 1007 na = 0.81008 nb = 0 #Rate Equation2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S2002 rplusb = Ab* (exp(-Eb/ (R * Tk))) * S2009 rplus = rplusa + rplusb4000 rate = rplus * (1 - SR ("Lizardite")^(1/Sig))5000 moles = rate * time6000 save moles-endBrucite-start1 name$ = "Brucite"2 if (PARM(1) = 0) then goto 3 else goto 53 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)4 GOTO 10005 S = PARM(2)*TOT("water")##------------------Kinetic calculation---------------------## #Parameters1000 Aa =4.04e05# mol.m-2.s-11001 Ab =1.31e-01# mol.m-2.s-11002 Ea =59000# J/mol1003 Eb =42000# J/mol1004 R = 8.314 #J.deg-1.mol-11006 Sig = 1 1007 na = 0.51008 nb = 0 #Rate Equation2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S2002 rplusb = Ab* (exp(-Eb/ (R * Tk))) * S2009 rplus = rplusa + rplusb4000 rate = rplus * (1 - SR ("Brucite")^(1/Sig))5000 moles = rate * time6000 save moles-endSELECTED_OUTPUT -file 11_CC1-FT-T55_SA25.sel -kinetic_reactants Forsterite Lizardite -saturation_indices Forsterite Lizardite -molalities Ca+2 Mg+2 -totals Mg Si CaUSER_GRAPH 1 -chart_title "ultramafic dissolution" -headings Forsterite pH -axis_titles Days "mol" -initial_solutions true -start10 PLOT_XY total_time/86400, KIN_DELTA("Forsterite"), color = RED, symbol = Square, symbol_size = 6, y-axis = 120 PLOT_XY total_time/86400, -la("H+"), color = Blue, symbol = Square, symbol_size = 6, y-axis = 2 -endUSER_GRAPH 2 -headings Mg -chart_title "ion concentration Mg" -axis_titles days "mmol" -initial_solution true -start10 graph_x total_time/8640020 graph_y TOTMOLE("Mg")*1000 -end
SURFACE_MASTER_SPECIES Surf SurfOHSURFACE_SPECIES SurfOH = SurfOH -log_k 0 SurfOH + H+ = SurfOH2+ -log_k 7.29 # = pKa1,int SurfOH = SurfO- + H+ -log_k -8.93 # = -pKa2,intENDSURFACESurfOH 10 1 600-no_edl-eq 1