TITLE Sandstone Equilibrium with Brine and Supercritical CO2 InjectionSOLUTION 1 Brine in equilibrium with minerals temp 75 pH 7 pe 4 units mg/L Alkalinity 149 B 16.1 Ca 2704 Cl 88409 K 168 Mg 889 Mn 0.81 Na 49706 S(6) 10.02 Si 13.7 Zn 0.04 Al 0 density 1 -water 1 # kgEQUILIBRIUM_PHASES 1 Forsterite 0 8 K-Feldspar 0 20 Quartz 0 10SAVE solution 1SOLUTION 2 Supercritical CO2 addition USE solution 1 temp 85GAS_PHASE 1 -fixed_volume CO2(g) 250 # Supercritical CO2 at 250 atmSAVE solution 2REACTION 1 CO2(g) 10 1 moles in 200 stepsRATES Quartz-start 1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol 3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) 4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz 5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 3510 dif_temp = 1/TK - 1/29820 pk_w = 13.7 + 4700.4 * dif_temp40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))50 SAVE moles * TIME-end K-feldspar-start 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar 3 REM PARM(2) = Adjusts lab rate to field rate 4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM K-Feldspar parameters 10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6100 REM Generic rate follows110 dif_temp = 1/TK - 1/281120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")130 REM rate by H+140 pk_H = pk_H + e_H * dif_temp150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)160 REM rate by hydrolysis170 pk_H2O = pk_H2O + e_H2O * dif_temp180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)190 REM rate by OH-200 pk_OH = pk_OH + e_OH * dif_temp210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH220 REM rate by CO2230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2250 rate = rate_H + rate_H2O + rate_OH + rate_CO2260 area = PARM(1) * M0 *(M/M0)^0.67270 rate = PARM(2) * area * rate * (1-SR("K-feldspar"))280 moles = rate * TIME290 SAVE moles-end Forsterite-start 1 rem unit should be mol,kgw-1 and second-1 2 rem parm(1) is surface area in the unit of m2/kgw 3 rem calculation of surface area can be found in the note 4 rem M is current moles of minerals. M0 is the initial moles of minerals 5 rem parm(2) is a correction factor 10 rem acid solution parameters 11 a1=8.38E+04 12 E1=67206 13 n1=0.470 20 rem neutral solution parameters 21 a2=1.58E+03 22 E2=79000 30 rem base solution parameters 31 a3=1.00E-07 32 E3=56637 33 n2=-0.600 36 rem rate=0 if no minerals and undersaturated 40 SR_mineral=SR("forsterite") 41 if (M<0) then goto 200 42 if (M=0 and SR_mineral<1) then goto 200 43 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67 50 if (SA<=0) then SA=1 60 R=8.31451 75 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 80 Rate2=a2*EXP(-E2/R/TK) 85 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2 90 Rate=(Rate1+Rate2 + Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save moles-endKINETICS 1Quartz -formula Quartz 1 -m 65 -m0 65 -parms 1e-06 -tol 1e-08K-Feldspar -formula K-Feldspar 1 -m 20 -m0 20 -parms 1e-05 -tol 1e-08Forsterite -formula Mg2SiO4 1 -m 8 -m0 8 -tol 1e-08-steps 1-step_divide 1-runge_kutta 3-bad_step_max 500SELECTED_OUTPUT -file output.txt -reset false -time -pH -alkalinity -si Quartz -si K-Feldspar -si Albite -tot Ca -tot Mg -tot K -tot Si -tot Na -tot ClEND
EQUILIBRIUM_PHASES 1 Forsterite 0 10 K-Feldspar 0 10 Quartz 0 10
TITLE Sandstone Equilibrium with Brine and Supercritical CO2 InjectionRATES Quartz-start 1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol 3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) 4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz 5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 3510 dif_temp = 1/TK - 1/29820 pk_w = 13.7 + 4700.4 * dif_temp40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))50 SAVE moles * TIME-end K-Feldspar -start 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar 3 REM PARM(2) = Adjusts lab rate to field rate 4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM K-Feldspar parameters 10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6100 REM Generic rate follows110 dif_temp = 1/TK - 1/281120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")130 REM rate by H+140 pk_H = pk_H + e_H * dif_temp150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)160 REM rate by hydrolysis170 pk_H2O = pk_H2O + e_H2O * dif_temp180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)190 REM rate by OH-200 pk_OH = pk_OH + e_OH * dif_temp210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH220 REM rate by CO2230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2250 rate = rate_H + rate_H2O + rate_OH + rate_CO2260 area = PARM(1) * M0 *(M/M0)^0.67270 rate = PARM(2) * area * rate * (1-SR("K-Feldspar"))280 moles = rate * TIME290 SAVE moles-end Forsterite-start 1 rem unit should be mol,kgw-1 and second-1 2 rem parm(1) is surface area in the unit of m2/kgw 3 rem calculation of surface area can be found in the note 4 rem M is current moles of minerals. M0 is the initial moles of minerals 5 rem parm(2) is a correction factor 10 rem acid solution parameters 11 a1=8.38E+04 12 E1=67206 13 n1=0.470 20 rem neutral solution parameters 21 a2=1.58E+03 22 E2=79000 30 rem base solution parameters 31 a3=1.00E-07 32 E3=56637 33 n2=-0.600 36 rem rate=0 if no minerals and undersaturated 40 SR_mineral=SR("forsterite") 41 if (M<0) then goto 200 42 if (M=0 and SR_mineral<1) then goto 200 43 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67 50 if (SA<=0) then SA=1 60 R=8.31451 75 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 80 Rate2=a2*EXP(-E2/R/TK) 85 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2 90 Rate=(Rate1+Rate2 + Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save moles-endSOLUTION 1 Brine in equilibrium with minerals temp 85 pH 7 pe 4 redox pe units mg/l density 1 Al 0 Alkalinity 149 B 16.1 Ca 2704 Cl 88409 K 168 Mg 889 Mn 0.81 Na 49706 S(6) 10.02 Si 13.7 Zn 0.04 -water 1 # kgEQUILIBRIUM_PHASES 1 Forsterite 0 10 K-Feldspar 0 10 Quartz 0 10SAVE solution 1ENDSOLUTION 2 Supercritical CO2 addition temp 85 pH 7 pe 4 redox pe units mmol/kgw density 1 -water 1 # kgUSE solution 1 temp 85GAS_PHASE 1 -fixed_volume -pressure 1 -volume 1 -temperature 85 CO2(g) 250SAVE solution 2REACTION 1 CO2(g) 1 10 moles in 1 stepsKINETICS 1Quartz -formula Quartz 1 -m 1 -m0 1 -parms 1e-06 1 -tol 1e-08K-Feldspar -formula K-Feldspar 1 -m 1 -m0 1 -parms 1e-05 1 -tol 1e-08Forsterite -formula Mg2SiO4 1 -m 1 -m0 1 -parms 1e-05 1 -tol 1e-08-steps 6307200000 in 200 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 500SELECTED_OUTPUT -file output.txt -reset false -time -pH -alkalinity -si Quartz -si K-Feldspar -si Forsterite -tot Ca -tot Mg -tot K -tot Si -tot Na -tot ClUSER_GRAPH 1 -headings Time pH Ca Mg K Si Na Cl -axis_titles "Time (years)" "Concentration (mg/L)" "pH" -chart_title "Major Ion Concentrations over Time" -axis_scale sy_axis auto 10 1 1 -initial_solutions false -connect_simulations true -plot_concentration_vs t -start10 GRAPH_X TOTAL_TIME/3600/24/365.2520 GRAPH_Y TOT("Ca"), TOT("Mg"),TOT("K"),TOT("Si"),TOT("Na"),TOT("Cl")30 GRAPH_SY -LA("H+") -end -active trueUSER_GRAPH 2 -headings Time Gas_Moles SI_Quartz SI_K-Feldspar SI_Forsterite -axis_titles "Time (years)" "Gas (moles)" "Saturation Index" -chart_title "Gas Moels & Saturation Index" -axis_scale sy_axis auto auto 1 1 -initial_solutions false -connect_simulations true -plot_concentration_vs t -start10 GRAPH_X TOTAL_TIME/3600/24/365.2520 GRAPH_Y GAS("CO2(g)")30 GRAPH_SY SI("Quartz"),SI("K-Feldspar"),SI("Forsterite") -end -active trueEND
TITLE Sandstone Equilibrium with Brine and Supercritical CO2 InjectionRATES Quartz-start 1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol 3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) 4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz 5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 3510 dif_temp = 1/TK - 1/29820 pk_w = 13.7 + 4700.4 * dif_temp40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))50 SAVE moles * TIME-end K-Feldspar-start 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar 3 REM PARM(2) = Adjusts lab rate to field rate 4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM K-Feldspar parameters 10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6100 REM Generic rate follows110 dif_temp = 1/TK - 1/281120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")130 REM rate by H+140 pk_H = pk_H + e_H * dif_temp150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)160 REM rate by hydrolysis170 pk_H2O = pk_H2O + e_H2O * dif_temp180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)190 REM rate by OH-200 pk_OH = pk_OH + e_OH * dif_temp210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH220 REM rate by CO2230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2250 rate = rate_H + rate_H2O + rate_OH + rate_CO2260 area = PARM(1) * M0 *(M/M0)^0.67270 rate = PARM(2) * area * rate * (1-SR("K-Feldspar"))280 moles = rate * TIME290 SAVE moles-end Forsterite-start 1 rem unit should be mol,kgw-1 and second-1 2 rem parm(1) is surface area in the unit of m2/kgw 3 rem calculation of surface area can be found in the note 4 rem M is current moles of minerals. M0 is the initial moles of minerals 5 rem parm(2) is a correction factor 10 rem acid solution parameters 11 a1=8.38E+04 12 E1=67206 13 n1=0.470 20 rem neutral solution parameters 21 a2=1.58E+03 22 E2=79000 30 rem base solution parameters 31 a3=1.00E-07 32 E3=56637 33 n2=-0.600 36 rem rate=0 if no minerals and undersaturated 40 SR_mineral=SR("forsterite") 41 if (M<0) then goto 200 42 if (M=0 and SR_mineral<1) then goto 200 43 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67 50 if (SA<=0) then SA=1 60 R=8.31451 75 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 80 Rate2=a2*EXP(-E2/R/TK) 85 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2 90 Rate=(Rate1+Rate2 + Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save moles-endENDSOLUTION 1 Brine in equilibrium with minerals temp 85 pH 7 pe 4 redox pe units mg/l density 1 Al 0 Alkalinity 149 B 16.1 Ca 2704 Cl 88409 K 168 Mg 889 Mn 0.81 Na 49706 S(6) 10.02 Si 13.7 Zn 0.04 -water 1 # kgEQUILIBRIUM_PHASES 1 Forsterite 0 10 K-Feldspar 0 10 Quartz 0 10SAVE solution 1ENDSOLUTION 2 Supercritical CO2 addition temp 85 pH 7 pe 4 redox pe units mmol/kgw density 1 -water 1 # kgENDUSE solution 1 temp 85GAS_PHASE 1 -fixed_volume -pressure 1 -volume 1 -temperature 85 CO2(g) 250SAVE solution 2#REACTION 1# CO2(g) 1# 10 moles in 1 stepsKINETICS 1Quartz -formula Quartz 1 -m 1 -m0 1 -parms 1e-06 1 -tol 1e-08K-Feldspar -formula K-Feldspar 1 -m 1 -m0 1 -parms 1e-05 1 -tol 1e-08Forsterite -formula Mg2SiO4 1 -m 1 -m0 1 -parms 1e-05 1 -tol 1e-08-steps 6307200000 in 10 #200 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 500USER_GRAPH 1 -headings Time Ca Mg K Si Na Cl pH -axis_titles "Time (years)" "Concentration (mg/L)" "pH" -chart_title "Major Ion Concentrations over Time" -axis_scale y_axis auto auto auto auto log #-axis_scale sy_axis auto 10 1 1 -initial_solutions false -connect_simulations true -plot_concentration_vs t -start10 GRAPH_X TOTAL_TIME/3600/24/365.2520 GRAPH_Y TOT("Ca"), TOT("Mg"),TOT("K"),TOT("Si"),TOT("Na"),TOT("Cl")30 GRAPH_SY -LA("H+") -end -active trueUSER_GRAPH 2 -headings Time Gas_Moles SI_Quartz SI_K-Feldspar SI_Forsterite -axis_titles "Time (years)" "Gas (moles)" "Saturation Index" -chart_title "Gas Moles & Saturation Index" -axis_scale sy_axis auto auto 1 1 -initial_solutions false -connect_simulations true -plot_concentration_vs t -start10 GRAPH_X TOTAL_TIME/3600/24/365.2520 GRAPH_Y GAS("CO2(g)")30 GRAPH_SY SI("Quartz"),SI("K-Feldspar"),SI("Forsterite") -end -active trueEND
TITLE Sandstone Equilibrium with Brine and Supercritical CO2 InjectionRATES Quartz-start 1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol 3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) 4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz 5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 3510 dif_temp = 1/TK - 1/29820 pk_w = 13.7 + 4700.4 * dif_temp40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))50 SAVE moles * TIME-end K-Feldspar-start 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar 3 REM PARM(2) = Adjusts lab rate to field rate 4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM K-Feldspar parameters 10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6100 REM Generic rate follows110 dif_temp = 1/TK - 1/281120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")130 REM rate by H+140 pk_H = pk_H + e_H * dif_temp150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)160 REM rate by hydrolysis170 pk_H2O = pk_H2O + e_H2O * dif_temp180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)190 REM rate by OH-200 pk_OH = pk_OH + e_OH * dif_temp210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH220 REM rate by CO2230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2250 rate = rate_H + rate_H2O + rate_OH + rate_CO2260 area = PARM(1) * M0 *(M/M0)^0.67270 rate = PARM(2) * area * rate * (1-SR("K-Feldspar"))280 moles = rate * TIME290 SAVE moles-end Forsterite-start 1 rem unit should be mol,kgw-1 and second-1 2 rem parm(1) is surface area in the unit of m2/kgw 3 rem calculation of surface area can be found in the note 4 rem M is current moles of minerals. M0 is the initial moles of minerals 5 rem parm(2) is a correction factor 10 rem acid solution parameters 11 a1=8.38E+04 12 E1=67206 13 n1=0.470 20 rem neutral solution parameters 21 a2=1.58E+03 22 E2=79000 30 rem base solution parameters 31 a3=1.00E-07 32 E3=56637 33 n2=-0.600 36 rem rate=0 if no minerals and undersaturated 40 SR_mineral=SR("forsterite") 41 if (M<0) then goto 200 42 if (M=0 and SR_mineral<1) then goto 200 43 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.67 50 if (SA<=0) then SA=1 60 R=8.31451 75 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 80 Rate2=a2*EXP(-E2/R/TK) 85 Rate3=a3*EXP(-E3/R/TK)*ACT("H+")^n2 90 Rate=(Rate1+Rate2 + Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save moles-endENDSOLUTION 1 Brine in equilibrium with minerals temp 85 pH 7 pe 4 redox pe units mg/l density 1 Al 0 Alkalinity 149 B 16.1 Ca 2704 Cl 88409 K 168 Mg 889 Mn 0.81 Na 49706 S(6) 10.02 Si 13.7 Zn 0.04 -water 1 # kgEQUILIBRIUM_PHASES 1 Forsterite 0 10 K-Feldspar 0 10 Quartz 0 10SAVE solution 1ENDUSE solution 1GAS_PHASE 1 -fixed_pressure -pressure 1 -volume 1 -temperature 85 CO2(g) 250SAVE solution 2KINETICS 1Quartz -formula Quartz 1 -m 1 -m0 1 -parms 1e-06 1 -tol 1e-08K-Feldspar -formula K-Feldspar 1 -m 1 -m0 1 -parms 1e-05 1 -tol 1e-08Forsterite -formula Mg2SiO4 1 -m 1 -m0 1 -parms 1e-05 1 -tol 1e-08Calcite -formula CaCO3 1 -m 0 -m0 0 -parms 167000 0.6 -tol 1e-08-steps 6307200000 in 10 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 500USER_GRAPH 1 -headings Time Ca Mg K Si Na Cl pH -axis_titles "Time (years)" "Concentration (mg/L)" "pH" -chart_title "Major Ion Concentrations over Time" -axis_scale y_axis auto auto auto auto log -initial_solutions false -connect_simulations true -plot_concentration_vs t -start10 GRAPH_X TOTAL_TIME/3600/24/365.2520 GRAPH_Y TOT("Ca"), TOT("Mg"),TOT("K"),TOT("Si"),TOT("Na"),TOT("Cl")30 GRAPH_SY -LA("H+") -end -active trueUSER_GRAPH 2 -headings Time Quartz Forsterite K-Feldspar Calcite -axis_titles "Time (years)" "Saturation Index" "" -chart_title "Gas Moles & Saturation Index" -axis_scale sy_axis auto auto 1 1 -initial_solutions false -connect_simulations true -plot_concentration_vs t -start10 GRAPH_X TOTAL_TIME/3600/24/365.2520 GRAPH_SY SI("Quartz"),SI("Forsterite"),SI("K-Feldspar"), SI("Calcite") -end -active trueUSER_GRAPH 3 -headings x Quartz Forsterite K-Feldspar Calcite -axis_titles "Phase volumes (cm3/100g)" "" "" -axis_scale y_axis auto auto 10 auto -initial_solutions false -connect_simulations true -plot_concentration_vs t -start10 V_Quartz = KIN("Quartz") * 60.0820 V_Forsterite = KIN("Forsterite") * 140.6930 V_KFeldspar = KIN("K-Feldspar")*278.3340 V_Calcite = KIN("Calcite")*100.086950 GRAPH_X TOTAL_TIME/3600/24/365.2560 GRAPH_Y V_Quartz,V_Forsterite,V_KFeldspar, V_Calcite -end -active trueEND
#########Calcite######### Example of KINETICS data block for calcite rate,# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257.# KINETICS 1# Calcite# -tol 1e-8# -m0 3.e-3# -m 3.e-3# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor# -time 1 day
SOLUTION 1 Brine in equilibrium with minerals temp 85 pH 7 pe 4 redox pe units mg/l density 1 Al 0 Alkalinity 149 B 16.1 Ca 2704 Cl 88409 K 168 Mg 889 Mn 0.81 Na 49706 S(6) 10.02 Si 13.7 Zn 0.04 -water 1 # kgEQUILIBRIUM_PHASES 1 Forsterite 0 10 K-Feldspar 0 10 Quartz 0 10GAS_PHASE 1 -fixed_pressure -pressure 250 -volume 1 -temperature 85 Ar(g) 250SAVE solution 1ENDUSE solution 1GAS_PHASE 2 -fixed_pressure -pressure 250 -volume 1 -temperature 85 CO2(g) 250KINETICS 1Quartz -formula Quartz 1 -m 1 -m0 1 -parms 1e-06 1 -tol 1e-08K-Feldspar -formula K-Feldspar 1 -m 1 -m0 1 -parms 1e-05 1 -tol 1e-08Forsterite -formula Mg2SiO4 1 -m 1 -m0 1 -parms 1e-05 1 -tol 1e-08Calcite -formula CaCO3 1 -m 0 -m0 0 -parms 167000 0.6 -tol 1e-08-steps 6307200000 in 20 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 500USER_GRAPH 2 -headings Time Quartz Forsterite K-Feldspar Calcite -axis_titles "Time (years)" "Saturation Index" "" -chart_title "Saturation Index" -axis_scale sy_axis auto auto 1 1 -initial_solutions true -connect_simulations true -plot_concentration_vs t -start10 GRAPH_X TOTAL_TIME/3600/24/365.2520 GRAPH_SY SI("Quartz"),SI("Forsterite"),SI("K-Feldspar"), SI("Calcite") -end -active trueUSER_GRAPH 3 -headings x Quartz Forsterite K-Feldspar Calcite -axis_titles "Phase volumes (cm3/100g)" "" "" -chart_title "Minerals Volum Fraction" -axis_scale y_axis auto auto auto 10 log -initial_solutions true -connect_simulations true -plot_concentration_vs t -start10 V_Quartz = KIN("Quartz") * 60.0820 V_Forsterite = KIN("Forsterite") * 140.6930 V_KFeldspar = KIN("K-Feldspar")*278.3340 V_Calcite = KIN("Calcite")*100.086950 GRAPH_X TOTAL_TIME/3600/24/365.2560 GRAPH_Y V_Quartz,V_Forsterite,V_KFeldspar, V_Calcite -end -active trueEND