R = k[OH]^n
Flux = V(dP)/RTA(dt)
TITLE - CO2 Sequestration ModelSOLUTION 1 pH 11.5 units mol/LRATESCO2_Sequestration-start1 REM Parm(1) is radius of pool area in meters2 REM surface area and volume are scaled based on (PARM(1)) radius of pool3 iR = 8.314 #REM Ideal gas constant in m??Pa/(kmol?K)4 SA = 0.31416 * (PARM(1) / 0.1) ^ 2 # Scaled surface Area calculation5 V = 7.548e-3 * (PARM(1) / 0.1) ^ 3 # Scaled volume calculation6 k1 = 8e-4 #rate constant7 n1 = 0.45 #reaction order10 R = k1* (TOT("OH-")) ^ n1 # Reaction rate calculation20 dP = (R * TIME * iR * TK * SA) / V # Change in pressure30 ppm = (dP / 101325) * (1e6) # Convert pressure change to ppm40 molC = (ppm * V) / 12.01 # Calculate moles of carbon50 moles = molC60 save moles-endKINETICS 1CO2_Sequestration -formula CO2 1 -parm 0.1 #radius of pool in m -time 1800 in 10 #seconds in 30 minutesUSER_GRAPH 1 -axis_titles "Time (seconds)" "[CO2] (moles)" -connect_simulations true-start10 GRAPH_X TOTAL_TIME20 GRAPH_Y CO2-end
SOLUTION_MASTER_SPECIES Carbon_dioxide Carbon_dioxide 0 CO2 28SOLUTION_SPECIESCarbon_dioxide = Carbon_dioxidePHASESCarbon_dioxide(g) Carbon_dioxide = Carbon_dioxide log_k -100 -T_c 304.2 # critical T, K -P_c 72.86 # critical P, atm -Omega 0.225 # acentric factorRATESCO2_Sequestration-start10 k = 1/60 # 1/min20 rate = k * GAS("Carbon_dioxide(g)") * GAS("Carbon_dioxide(g)") / (1e-8 + GAS("Carbon_dioxide(g)"))30 moles = rate * TIME 40 SAVE moles50 END-endENDTITLE - CO2 Sequestration ModelSOLUTION 1 pH 11.5 Na 1 charge units mol/LKINETICS 1CO2_Sequestration -formula Carbon_dioxide -1 CO2 1 -parm 0.1 #radius of pool in m -time 500 in 100 #seconds in 30 minutes-cvodeINCREMENTAL_REACTIONSGAS_PHASE-fixed_volumeCarbon_dioxide(g) 1CO2(g) 0USER_GRAPH 1 -headings time CO2 Pressure -axis_titles "Time, seconds)" "MOL(CO2)" "Pressure, atm" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME20 GRAPH_Y MOL("CO2")30 GRAPH_SY GAS_P -end -active true