TITLE Example 9.--Kinetically controlled oxidation of ferrous iron. Decoupled valence states of iron.SOLUTION_MASTER_SPECIESFe_di Fe_di+2 0.0 Fe_di 55.847Fe_tri Fe_tri+3 0.0 Fe_tri 55.847SOLUTION_SPECIESFe_di+2 = Fe_di+2 log_k 0.0Fe_tri+3 = Fe_tri+3 log_k 0.0## Fe+2 species#Fe_di+2 + H2O = Fe_diOH+ + H+ log_k -9.5 delta_h 13.20 kcal##... and also other Fe+2 species### Fe+3 species#Fe_tri+3 + H2O = Fe_triOH+2 + H+ log_k -2.19 delta_h 10.4 kcal##... and also other Fe+3 species#PHASESGoethite Fe_triOOH + 3 H+ = Fe_tri+3 + 2 H2O log_k -1.0ENDSOLUTION 1 pH 7.0 pe 10.0 O2(g) -0.67 Fe_di 0.1 Na 10. Cl 10. chargeEQUILIBRIUM_PHASES 1 O2(g) -0.67RATESFe_di_ox -start 10 Fe_di = TOT("Fe_di") 20 if (Fe_di <= 0) then goto 200 30 p_o2 = SR("O2(g)") 40 moles = (2.91e-9 + 1.33e12 * (ACT("OH-"))^2 * p_o2) * Fe_di * TIME 200 SAVE moles -endKINETICS 1Fe_di_ox -formula Fe_di -1.0 Fe_tri 1.0 -steps 100 400 3100 10800 21600 5.04e4 8.64e4 1.728e5 1.728e5 1.728e5 1.728e5 -step_divide 1e-4INCREMENTAL_REACTIONS trueSELECTED_OUTPUT -file ex9.sel -reset falseUSER_PUNCH -headings Days Fe(2) Fe(3) pH si_goethite 10 PUNCH SIM_TIME / 3600 / 24, TOT("Fe_di")*1e6, TOT("Fe_tri")*1e6, -LA("H+"),\ SI("Goethite")USER_GRAPH Example 9 -headings _time_ Fe(2) Fe(3) pH -chart_title "Oxidation of Ferrous Iron" -axis_titles "Time, in days" "Micromole per kilogram water" "pH" -axis_scale secondary_y_axis 4.0 7.0 1.0 0.5 -start 10 GRAPH_X TOTAL_TIME / 3600 / 24 20 GRAPH_Y TOT("Fe_di")*1e6, TOT("Fe_tri")*1e6 30 GRAPH_SY -LA("H+") -endEND
Fe+2 = Fe+3 + e- -log_k -13.02 -delta_h 9.680 kcal -gamma 9.0 0
H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O
SOLUTION_SPECIESH+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O log_k 8.4899 -delta_H -97.209 kJ/mol # Calculated enthalpy of reaction Fe+3# Enthalpy of formation: -11.85 kcal/mol -analytic -1.7808e+1 -1.1753e-2 4.7609e+3 5.5866e+0 7.4295e+1# -Range: 0-300ENDTITLE Example 9.--Kinetically controlled oxidation of ferrous iron. Decoupled valence states of iron.SOLUTION_MASTER_SPECIESFe_di Fe_di+2 0.0 Fe_di 55.847Fe_tri Fe_tri+3 0.0 Fe_tri 55.847SOLUTION_SPECIESFe_di+2 = Fe_di+2 log_k 0.0Fe_tri+3 = Fe_tri+3 log_k 0.0## Fe+2 species#Fe_di+2 + H2O = Fe_diOH+ + H+ log_k -9.5 delta_h 13.20 kcal##... and also other Fe+2 species#Fe_di+2 + Cl- = Fe_diCl+ log_k 0.14Fe_di+2 + CO3-2 = Fe_diCO3 log_k 4.38Fe_di+2 + HCO3- = Fe_diHCO3+ log_k 2.0Fe_di+2 + SO4-2 = Fe_diSO4 log_k 2.25 delta_h 3.230 kcalFe_di+2 + HSO4- = Fe_diHSO4+ log_k 1.08Fe_di+2 + 2HS- = Fe_di(HS)2 log_k 8.95Fe_di+2 + 3HS- = Fe_di(HS)3- log_k 10.987Fe_di+2 + HPO4-2 = Fe_diHPO4 log_k 3.6Fe_di+2 + H2PO4- = Fe_diH2PO4+ log_k 2.7Fe_di+2 + F- = Fe_diF+ log_k 1.0## Fe+3 species#Fe_tri+3 + H2O = Fe_triOH+2 + H+ log_k -2.19 delta_h 10.4 kcal##... and also other Fe+3 species#Fe_tri+3 + 2 H2O = Fe_tri(OH)2+ + 2 H+ log_k -5.67 delta_h 17.1 kcalFe_tri+3 + 3 H2O = Fe_tri(OH)3 + 3 H+ log_k -12.56 delta_h 24.8 kcalFe_tri+3 + 4 H2O = Fe_tri(OH)4- + 4 H+ log_k -21.6 delta_h 31.9 kcal2 Fe_tri+3 + 2 H2O = Fe_tri2(OH)2+4 + 2 H+ log_k -2.95 delta_h 13.5 kcal3 Fe_tri+3 + 4 H2O = Fe_tri3(OH)4+5 + 4 H+ log_k -6.3 delta_h 14.3 kcalFe_tri+3 + Cl- = Fe_triCl+2 log_k 1.48 delta_h 5.6 kcalFe_tri+3 + 2 Cl- = Fe_triCl2+ log_k 2.13Fe_tri+3 + 3 Cl- = Fe_triCl3 log_k 1.13Fe_tri+3 + SO4-2 = Fe_triSO4+ log_k 4.04 delta_h 3.91 kcalFe_tri+3 + HSO4- = Fe_triHSO4+2 log_k 2.48Fe_tri+3 + 2 SO4-2 = Fe_tri(SO4)2- log_k 5.38 delta_h 4.60 kcalFe_tri+3 + HPO4-2 = Fe_triHPO4+ log_k 5.43 delta_h 5.76 kcalFe_tri+3 + H2PO4- = Fe_triH2PO4+2 log_k 5.43Fe_tri+3 + F- = Fe_triF+2 log_k 6.2 delta_h 2.7 kcalFe_tri+3 + 2 F- = Fe_triF2+ log_k 10.8 delta_h 4.8 kcalFe_tri+3 + 3 F- = Fe_triF3 log_k 14.0 delta_h 5.4 kcalPHASESGoethite Fe_triOOH + 3 H+ = Fe_tri+3 + 2 H2O log_k -1.0RATESFe_di_ox -start 10 Fe_di = TOT("Fe_di") 20 if (Fe_di <= 0) then goto 200 30 p_o2 = SR("O2(g)") 40 moles = (2.91e-9 + 1.33e12 * (ACT("OH-"))^2 * p_o2) * Fe_di * TIME45 REM H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O50 q = LA("Fe_tri+3") + 0.5*LA("H2O") - (LA("H+") + LA("Fe_di+2") + 0.25*LA("O2")) - LK_SPECIES("Fe+3")60 moles = moles * (1 - 10^q) 200 SAVE moles -endENDSOLUTION 1 pH 7.0 pe 10.0 O2(g) -0.67 Fe_di 0.1 Na 10. Cl 10. chargeKINETICS 1Fe_di_ox -formula Fe_di -1.0 Fe_tri 1.0 -cvode -steps 1e2 1e3 1e4 1e5 1e6 1e7 1e8 1e9 1e10 1e11 1e12INCREMENTAL_REACTIONS trueUSER_GRAPH 1 Example 9 -headings _time_ Fe(2) Fe(3) O2 pH pe -axis_titles "Time, in days" "Micromole per kilogram water" "pH" -chart_title "Oxidation of Ferrous Iron" -axis_scale x_axis auto auto auto auto log -axis_scale y_axis auto auto auto auto log #-axis_scale sy_axis 4 7 1 1 -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME / 3600 / 2420 GRAPH_Y TOT("Fe_di")*1e6, TOT("Fe_tri")*1e6, TOT("O2")30 GRAPH_SY -LA("H+")40 GRAPH_SY -LA("e-") -end -active trueSAVE solution 2END