PhreeqcUsers Discussion Forum

Registrations currently disabled due to excessive spam. Please email phreeqcusers at gmail.com to request an account.
Welcome Guest
 

  • Forum Home
  • Login
  • Register

  • PhreeqcUsers Discussion Forum »
  • Processes »
  • Dissolution and precipitation »
  • Heating water in concrete lined borehole - geochemical changes
« previous next »
  • Print
Pages: [1]   Go Down

Author Topic: Heating water in concrete lined borehole - geochemical changes  (Read 772 times)

ross

  • Contributor
  • Posts: 1
Heating water in concrete lined borehole - geochemical changes
« on: 14/06/24 08:48 »
I am trying to model the geochemical changes of water of a concrete lined borehole (not directly in touch with the aquifers) if we heat it directly (not injecting any water). I have the physio-chemical data including cations, anions, pH, EC, Temp, ORP and DO from certain depths. The water is interacting with the concrete wall.

Trying to model -
1) cation/anion concentration changes after heating
2) pH changes after heating
3) if any minerals will be precipitated after heating
4) whether the water will become corrosive after heating
5) whether the water can form scaling

Please help me to build the model, I am a new PHREEQC user.
Logged

dlparkhurst

  • Global Moderator
  • *****
  • Posts: 4030
Re: Heating water in concrete lined borehole - geochemical changes
« Reply #1 on: 14/06/24 15:36 »
PHREEQC coauthor Appelo has done some modeling with concrete. You can use the following as an introduction to the literature.

# Refs
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270. (https://www.hydrochemistry.eu/pub/appt_CCR21.pdf)
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.

Here are the definitions of concrete phases that he used with phreeqc.dat:
Code: [Select]
# Concrete minerals
# Read this file in your input file with
#        INCLUDE$ c:\phreeqc\database\concrete_phr.dat

PRINT; -reset false

# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
# #
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
# SURFACE_MASTER_SPECIES
# Sura Sura+
# SURFACE_SPECIES
# Sura+ = Sura+
# SOLUTION 1
# pH 7 charge
# REACTION 1
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
# SAVE solution 2
# END

# RATES
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
# 10 tot_ss = 2 * equi("AFmsura")
# 20 SAVE (m - tot_ss) * time
# -end

# USE solution 2
# EQUILIBRIUM_PHASES 2
# AFmsura 0 0
# KINETICS 2
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
# SURFACE 2
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
# END

PHASES
Portlandite # Reardon, 1990
  Ca(OH)2 = Ca+2 + 2 OH-
  -log_k -5.19; -Vm 33.1

Gibbsite
  Al(OH)3 + OH- = Al(OH)4-
  -log_k  -1.123;  -Vm  32.2
  -analyt  -7.234  1.068e-2  0  1.1829 # data from Wesolowski, 1992, GCA 56, 1065

# AFm with a single exchange site...
OH-AFm # Appelo, 2021
  Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
  -log_k  -12.84; -Vm  185
OH-AFmsura
  Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
  -log_k  -12.74; -Vm  185

Cl-AFm # Friedel's salt.  Appelo, 2021
  Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
  -log_k  -13.68; -Vm  136
Cl-AFmsura
  Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
  -log_k  -13.59; -Vm  136

# AFm with a double exchange site...
SO4-AFm # Monosulfoaluminate. Appelo, 2021
  Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
  -log_k  -29.15; -Vm  309
SO4-AFmsura
  Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95   SO4-2 + 4 OH- + 6 H2O
  -log_k  -28.88; -Vm  309

SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
  Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
  -log_k  -27.24; -Vm  340
SO4-OH-AFmsura
  Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
  -log_k  -26.94; -Vm  340

CO3-AFm # Monocarboaluminate. Appelo, 2021
  Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
  -log_k  -31.32; -Vm  261
CO3-AFmsura
  Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95  CO3-2 + 4 OH- + 5 H2O
  -log_k  -31.05; -Vm  261

CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
  Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
  -log_k  -29.06; -Vm  284
CO3-OH-AFmsura
  Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
  -log_k  -28.84; -Vm  284

SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
  Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
  -log_k  -28.52; -Vm  290
SO4-Cl-AFmsura
  Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
  -log_k  -28.41; -Vm  290

SO4-AFem # Lothenbach 2019
  Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
  -log_k  -31.57;  -Vm  321
CO3-AFem # Lothenbach 2019
  Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
  -log_k  -34.59;  -Vm  292
CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
  Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
  -log_k  -30.83;  -Vm  273

Ettringite # Matschei, 2007, fig. 27
  Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
  -log_k  -44.8; -Vm  707
  -analyt  334.09  0  -26251  -117.57  # 5 - 75 C

CO3-ettringite # Matschei, 2007, tbl 13
  Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
  -log_k  -46.50; -Vm  652

C2AH8 # Matschei, fig. 19
  Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
  -log_k  -13.55; -Vm  184
  -analyt  -225.37  -0.12380  0  100.522 # 1 - 50 ?C

CAH10  # Matschei, fig. 19
  CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
  -log_k  -7.60; -Vm  194
  -delta_h  43.2 # 1 - 20 ?C

Hydrogarnet_Al # Matschei, 2007, Table 5
  (CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
  -log_k -20.84; -Vm 150
 # -analyt  -20.64  -0.002  0  0.16 # 5 - 105 ?C
 # -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255

Hydrogarnet_Fe # Lothenbach 2019
  (CaO)3Fe2O3(H2O)6 = 3 Ca+2 + 2 Fe(OH)4- + 4 OH-
  -log_k -26.3;  -Vm  155

Hydrogarnet_Si # Matschei, 2007, Table 6
  Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
  -log_k  -33.69; -Vm 143
  -analyt  -476.84  -0.2598  0  210.38 # 5 - 85 ?C

Jennite # CSH2.1. Lothenbach 2019
  Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
  -log_k  -13.12; -Vm  78.4

Tobermorite-I # Lothenbach 2019
  CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
  -log_k -6.80; -Vm  70.4

Tobermorite-II # Lothenbach 2019
  Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
  -log_k -7.99; -Vm  58.7

PRINT; -reset true
# Refs
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270.
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.

And with pitzer.dat:

Code: [Select]
# Concrete minerals for use with
# DATABASE c:\phreeqc\database\pitzer.dat
# Read this file in your input file with
#        INCLUDE$ c:\phreeqc\database\concrete_pz.dat

PRINT; -reset false

SOLUTION_MASTER_SPECIES
Al Al(OH)4- 0 Al 26.9815
H(0) H2 0 H
O(0) O2 0 O
SOLUTION_SPECIES
Al(OH)4- = Al(OH)4-; -dw 1.04e-9 # dw from Mackin & Aller, 1983, GCA 47, 959
2 H2O = O2 + 4 H+ + 4 e-; log_k  -86.08; delta_h  134.79 kcal; -dw  2.35e-9
2 H+ + 2 e- = H2; log_k  -3.15;  delta_h  -1.759 kcal; -dw  5.13e-9

PITZER # Using data from Weskolowski, 1992, GCA
#Park & Englezos 99 The model Pitzer coeff's are different from pitzer.dat, data are everywhere below the calc'd osmotic from Weskolowski.
-B0
  Al(OH)4-  K+   -0.0669  0 0  8.24e-3
  Al(OH)4-  Na+  -0.0289  0 0  1.18e-3
-B1
  Al(OH)4-  K+    0.668  0 0 -1.93e-2
  Al(OH)4-  Na+   0.461  0 0 -2.33e-3
-C0
  Al(OH)4-  K+    0.0499  0 0  -3.63e-3
  Al(OH)4-  Na+   0.0073  0 0  -1.56e-4
-THETA
  Al(OH)4-   Cl- -0.0233  0 0  -8.11e-4
  Al(OH)4-   OH-  0.0718  0 0  -7.29e-4
   # Al(OH)4-   SO4-2    -0.012
-PSI
  Al(OH)4-   Cl-   K+    0.0009  0 0   9.94e-4
  Al(OH)4-   Cl-   Na+   0.0048  0 0   1.32e-4
  Al(OH)4-   OH-   Na+  -0.0048  0 0   1.00e-4
  Al(OH)4-   OH-   K+    0  0 0  0
  Al(OH)4-   K+    Na+   0  0 0  0
END

# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.
# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.
# #
# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:
# SURFACE_MASTER_SPECIES
# Sura Sura+
# SURFACE_SPECIES
# Sura+ = Sura+
# SOLUTION 1
# pH 7 charge
# REACTION 1
# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20
# SAVE solution 2
# END

# RATES
# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...
# 10 tot_ss = 2 * equi("AFmsura")
# 20 SAVE (m - tot_ss) * time
# -end

# USE solution 2
# EQUILIBRIUM_PHASES 2
# AFmsura 0 0
# KINETICS 2
# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30
# SURFACE 2
# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1
# END

PHASES
O2(g)
  O2 = O2; -log_k  -2.8983
  -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5
H2(g)
 H2 = H2; -log_k  -3.1050
 -analytic   -9.3114    4.6473e-3   -49.335    1.4341    1.2815e5

Portlandite # Reardon, 1990
  Ca(OH)2 = Ca+2 + 2 OH-
  -log_k -5.19; -Vm 33.1

Gibbsite
  Al(OH)3 + OH- = Al(OH)4-
  -log_k  -1.123;  -Vm  32.2
  -analyt  -7.234  1.068e-2  0  1.1829 # data from Wesolowski, 1992, GCA 56, 1065

# AFm with a single exchange site...
OH-AFm # Appelo, 2021
  Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O
  -log_k  -12.84; -Vm  185
OH-AFmsura
  Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O
  -log_k  -12.74; -Vm  185

Cl-AFm # Friedel's salt.  Appelo, 2021
  Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O
  -log_k  -13.68; -Vm  136
Cl-AFmsura
  Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O
  -log_k  -13.59; -Vm  136

# AFm with a double exchange site...
SO4-AFm # Monosulfoaluminate. Appelo, 2021
  Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O
  -log_k  -29.15; -Vm  309
SO4-AFmsura
  Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95   SO4-2 + 4 OH- + 6 H2O
  -log_k  -28.88; -Vm  309

SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021
  Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O
  -log_k  -27.24; -Vm  340
SO4-OH-AFmsura
  Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O
  -log_k  -26.94; -Vm  340

CO3-AFm # Monocarboaluminate. Appelo, 2021
  Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O
  -log_k  -31.32; -Vm  261
CO3-AFmsura
  Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95  CO3-2 + 4 OH- + 5 H2O
  -log_k  -31.05; -Vm  261

CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021
  Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O
  -log_k  -29.06; -Vm  284
CO3-OH-AFmsura
  Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O
  -log_k  -28.84; -Vm  284

SO4-Cl-AFm # Kuzel's salt. Appelo, 2021
  Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O
  -log_k  -28.52; -Vm  290
SO4-Cl-AFmsura
  Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O
  -log_k  -28.41; -Vm  290

# No Fe(OH)4- in Pitzer...
# SO4-AFem # Lothenbach 2019
  # Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O
  # -log_k  -31.57;  -Vm  321
# CO3-AFem # Lothenbach 2019
  # Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O
  # -log_k  -34.59;  -Vm  292
# CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O??
  # Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O
  # -log_k  -30.83;  -Vm  273

Ettringite # Matschei, 2007, fig. 27
  Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O
  -log_k  -44.8; -Vm  707
  -analyt  334.09  0  -26251  -117.57  # 5 - 75 C

CO3-ettringite # Matschei, 2007, tbl 13
  Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O;
  -log_k  -46.50; -Vm  652

C2AH8 # Matschei, fig. 19
  Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O
  -log_k  -13.55; -Vm  184
  -analyt  -225.37  -0.12380  0  100.522 # 1 - 50 ?C

CAH10  # Matschei, fig. 19
  CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O
  -log_k  -7.60; -Vm  194
  -delta_h  43.2 # 1 - 20 ?C

Hydrogarnet_Al # Matschei, 2007, Table 5
  (CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH-
  -log_k -20.84; -Vm 150
 # -analyt  -20.64  -0.002  0  0.16 # 5 - 105 ?C
 # -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255

Hydrogarnet_Si # Matschei, 2007, Table 6
  Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH-
  -log_k  -33.69; -Vm 143
  -analyt  -476.84  -0.2598  0  210.38 # 5 - 85 ?C

Jennite # CSH2.1. Lothenbach 2019
  Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4-
  -log_k  -13.12; -Vm  78.4

Tobermorite-I # Lothenbach 2019
  CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4-
  -log_k -6.80; -Vm  70.4

Tobermorite-II # Lothenbach 2019
  Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4-
  -log_k -7.99; -Vm  58.7

PRINT; -reset true
# Refs
# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270
# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.
# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.
Logged

  • Print
Pages: [1]   Go Up
« previous next »
  • PhreeqcUsers Discussion Forum »
  • Processes »
  • Dissolution and precipitation »
  • Heating water in concrete lined borehole - geochemical changes
 

  • SMF 2.0.19 | SMF © 2021, Simple Machines | Terms and Policies
  • XHTML
  • RSS
  • WAP2