# Concrete minerals# Read this file in your input file with # INCLUDE$ c:\phreeqc\database\concrete_phr.datPRINT; -reset false# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.# ## # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:# SURFACE_MASTER_SPECIES# Sura Sura+# SURFACE_SPECIES# Sura+ = Sura+# SOLUTION 1# pH 7 charge# REACTION 1# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20# SAVE solution 2# END# RATES# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...# 10 tot_ss = 2 * equi("AFmsura")# 20 SAVE (m - tot_ss) * time# -end# USE solution 2# EQUILIBRIUM_PHASES 2# AFmsura 0 0# KINETICS 2# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30# SURFACE 2# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1# ENDPHASESPortlandite # Reardon, 1990 Ca(OH)2 = Ca+2 + 2 OH- -log_k -5.19; -Vm 33.1Gibbsite Al(OH)3 + OH- = Al(OH)4- -log_k -1.123; -Vm 32.2 -analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065# AFm with a single exchange site...OH-AFm # Appelo, 2021 Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O -log_k -12.84; -Vm 185OH-AFmsura Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O -log_k -12.74; -Vm 185Cl-AFm # Friedel's salt. Appelo, 2021 Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O -log_k -13.68; -Vm 136Cl-AFmsura Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O -log_k -13.59; -Vm 136# AFm with a double exchange site...SO4-AFm # Monosulfoaluminate. Appelo, 2021 Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O -log_k -29.15; -Vm 309SO4-AFmsura Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O -log_k -28.88; -Vm 309SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021 Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O -log_k -27.24; -Vm 340SO4-OH-AFmsura Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O -log_k -26.94; -Vm 340CO3-AFm # Monocarboaluminate. Appelo, 2021 Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O -log_k -31.32; -Vm 261CO3-AFmsura Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O -log_k -31.05; -Vm 261CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021 Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O -log_k -29.06; -Vm 284CO3-OH-AFmsura Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O -log_k -28.84; -Vm 284SO4-Cl-AFm # Kuzel's salt. Appelo, 2021 Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O -log_k -28.52; -Vm 290SO4-Cl-AFmsura Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O -log_k -28.41; -Vm 290SO4-AFem # Lothenbach 2019 Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O -log_k -31.57; -Vm 321CO3-AFem # Lothenbach 2019 Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O -log_k -34.59; -Vm 292CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O?? Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O -log_k -30.83; -Vm 273Ettringite # Matschei, 2007, fig. 27 Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O -log_k -44.8; -Vm 707 -analyt 334.09 0 -26251 -117.57 # 5 - 75 CCO3-ettringite # Matschei, 2007, tbl 13 Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O; -log_k -46.50; -Vm 652C2AH8 # Matschei, fig. 19 Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O -log_k -13.55; -Vm 184 -analyt -225.37 -0.12380 0 100.522 # 1 - 50 ?CCAH10 # Matschei, fig. 19 CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O -log_k -7.60; -Vm 194 -delta_h 43.2 # 1 - 20 ?CHydrogarnet_Al # Matschei, 2007, Table 5 (CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH- -log_k -20.84; -Vm 150 # -analyt -20.64 -0.002 0 0.16 # 5 - 105 ?C # -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255Hydrogarnet_Fe # Lothenbach 2019 (CaO)3Fe2O3(H2O)6 = 3 Ca+2 + 2 Fe(OH)4- + 4 OH- -log_k -26.3; -Vm 155Hydrogarnet_Si # Matschei, 2007, Table 6 Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH- -log_k -33.69; -Vm 143 -analyt -476.84 -0.2598 0 210.38 # 5 - 85 ?CJennite # CSH2.1. Lothenbach 2019 Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4- -log_k -13.12; -Vm 78.4Tobermorite-I # Lothenbach 2019 CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4- -log_k -6.80; -Vm 70.4Tobermorite-II # Lothenbach 2019 Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4- -log_k -7.99; -Vm 58.7PRINT; -reset true# Refs# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270.# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.
# Concrete minerals for use with # DATABASE c:\phreeqc\database\pitzer.dat# Read this file in your input file with # INCLUDE$ c:\phreeqc\database\concrete_pz.datPRINT; -reset falseSOLUTION_MASTER_SPECIESAl Al(OH)4- 0 Al 26.9815H(0) H2 0 HO(0) O2 0 OSOLUTION_SPECIESAl(OH)4- = Al(OH)4-; -dw 1.04e-9 # dw from Mackin & Aller, 1983, GCA 47, 9592 H2O = O2 + 4 H+ + 4 e-; log_k -86.08; delta_h 134.79 kcal; -dw 2.35e-92 H+ + 2 e- = H2; log_k -3.15; delta_h -1.759 kcal; -dw 5.13e-9PITZER # Using data from Weskolowski, 1992, GCA#Park & Englezos 99 The model Pitzer coeff's are different from pitzer.dat, data are everywhere below the calc'd osmotic from Weskolowski.-B0 Al(OH)4- K+ -0.0669 0 0 8.24e-3 Al(OH)4- Na+ -0.0289 0 0 1.18e-3-B1 Al(OH)4- K+ 0.668 0 0 -1.93e-2 Al(OH)4- Na+ 0.461 0 0 -2.33e-3-C0 Al(OH)4- K+ 0.0499 0 0 -3.63e-3 Al(OH)4- Na+ 0.0073 0 0 -1.56e-4-THETA Al(OH)4- Cl- -0.0233 0 0 -8.11e-4 Al(OH)4- OH- 0.0718 0 0 -7.29e-4 # Al(OH)4- SO4-2 -0.012-PSI Al(OH)4- Cl- K+ 0.0009 0 0 9.94e-4 Al(OH)4- Cl- Na+ 0.0048 0 0 1.32e-4 Al(OH)4- OH- Na+ -0.0048 0 0 1.00e-4 Al(OH)4- OH- K+ 0 0 0 0 Al(OH)4- K+ Na+ 0 0 0 0END# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O.# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura.# ## # Example of the combination of the charged AFmsura and charge-balancing EDL calculations:# SURFACE_MASTER_SPECIES# Sura Sura+# SURFACE_SPECIES# Sura+ = Sura+# SOLUTION 1# pH 7 charge# REACTION 1# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20# SAVE solution 2# END# RATES# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al...# 10 tot_ss = 2 * equi("AFmsura")# 20 SAVE (m - tot_ss) * time# -end# USE solution 2# EQUILIBRIUM_PHASES 2# AFmsura 0 0# KINETICS 2# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30# SURFACE 2# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1# ENDPHASESO2(g) O2 = O2; -log_k -2.8983 -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5H2(g) H2 = H2; -log_k -3.1050 -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5Portlandite # Reardon, 1990 Ca(OH)2 = Ca+2 + 2 OH- -log_k -5.19; -Vm 33.1Gibbsite Al(OH)3 + OH- = Al(OH)4- -log_k -1.123; -Vm 32.2 -analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065# AFm with a single exchange site...OH-AFm # Appelo, 2021 Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O -log_k -12.84; -Vm 185OH-AFmsura Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O -log_k -12.74; -Vm 185Cl-AFm # Friedel's salt. Appelo, 2021 Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O -log_k -13.68; -Vm 136Cl-AFmsura Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O -log_k -13.59; -Vm 136# AFm with a double exchange site...SO4-AFm # Monosulfoaluminate. Appelo, 2021 Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O -log_k -29.15; -Vm 309SO4-AFmsura Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O -log_k -28.88; -Vm 309SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021 Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O -log_k -27.24; -Vm 340SO4-OH-AFmsura Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O -log_k -26.94; -Vm 340CO3-AFm # Monocarboaluminate. Appelo, 2021 Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O -log_k -31.32; -Vm 261CO3-AFmsura Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O -log_k -31.05; -Vm 261CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021 Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O -log_k -29.06; -Vm 284CO3-OH-AFmsura Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O -log_k -28.84; -Vm 284SO4-Cl-AFm # Kuzel's salt. Appelo, 2021 Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O -log_k -28.52; -Vm 290SO4-Cl-AFmsura Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O -log_k -28.41; -Vm 290# No Fe(OH)4- in Pitzer...# SO4-AFem # Lothenbach 2019 # Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O # -log_k -31.57; -Vm 321# CO3-AFem # Lothenbach 2019 # Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O # -log_k -34.59; -Vm 292# CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O?? # Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O # -log_k -30.83; -Vm 273Ettringite # Matschei, 2007, fig. 27 Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O -log_k -44.8; -Vm 707 -analyt 334.09 0 -26251 -117.57 # 5 - 75 CCO3-ettringite # Matschei, 2007, tbl 13 Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O; -log_k -46.50; -Vm 652C2AH8 # Matschei, fig. 19 Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O -log_k -13.55; -Vm 184 -analyt -225.37 -0.12380 0 100.522 # 1 - 50 ?CCAH10 # Matschei, fig. 19 CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O -log_k -7.60; -Vm 194 -delta_h 43.2 # 1 - 20 ?CHydrogarnet_Al # Matschei, 2007, Table 5 (CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH- -log_k -20.84; -Vm 150 # -analyt -20.64 -0.002 0 0.16 # 5 - 105 ?C # -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255Hydrogarnet_Si # Matschei, 2007, Table 6 Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH- -log_k -33.69; -Vm 143 -analyt -476.84 -0.2598 0 210.38 # 5 - 85 ?CJennite # CSH2.1. Lothenbach 2019 Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4- -log_k -13.12; -Vm 78.4Tobermorite-I # Lothenbach 2019 CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4- -log_k -6.80; -Vm 70.4Tobermorite-II # Lothenbach 2019 Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4- -log_k -7.99; -Vm 58.7PRINT; -reset true# Refs# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506.# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410.