RATES 1Labradorite# from Palandri and Kharaka 2004# experimental condition range T=25-250C, pH=0.5-6-start1 rem unit should be mol,kgw-1 and second-12 rem parm(1) is surface area in the unit of m2/kgw3 rem calculation of surface area can be found in the note4 rem M is current moles of minerals. M0 is the initial moles of minerals5 rem parm(2) is a correction factor10 rem acid solution parameters11 a1=5.01E-01 12 E1=4206413 n1=0.62620 rem neutral solution parameters21 a2=1.00E-03 22 E2=4515530 rem base solution parameters31 a3=5.62E-10 32 E3=4598833 n2=-0.78236 rem rate=0 if no minerals and undersaturated40 SR_mineral=SR("labradorite")41 if (M<0) then goto 20042 if (M=0 and SR_mineral<1) then goto 20043 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.6750 if (SA<=0) then SA=160 R=8.3145175 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 #acid rate expression90 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save molesPHASESFix_pee- = e-log_k 0.0glassSiTi0.024Al0.358Fe0.188Mg0.281Ca0.264Na0.079K0.008O3.370 + 2.644H+ = 0.358Al+3 + 0.008K+ + 0.079Na+ + 0.264Ca+2 + 0.281Mg+2 + 0.024Ti(OH)4 + 0.171Fe+2 + 0.017Fe+3 + SiO2 + 1.274H2O -log_k -2.60 -delta_h 30.3 kj/molLabradorite #Na0.4Ca0.6Al1.6Si2.4O8 + 3.2H2O = 0.4Na+ + 0.6Ca+2 + 1.6Al(OH)4- + 2.4SiO2 Na0.4Ca0.6Al1.6Si2.4O8 = 0.4Na+ + 0.6Ca+2 + 1.6AlO2- + 2.4SiO2 -log_k -20.0702 -analytic -92.306 0.0 -2947.59 33.017 318144 -35.495E-6ENDSOLUTION 1pH 7.5Na 1Ca 0.6K 0.1Mg 0.02Fe 0.0012Cl 0.3S 0.1 as SO4-2Si 0.2Al 0.001Alkalinity 2 as HCO3use SOLUTION 1solid_solutions 1 two solid solutionPigeonite -comp Enstatite 6.9752-comp Ferrosilite 5.6352-comp Wollastonite 5.4496ENDEQUILIBRIUM_PHASES 1Magnetite 0 0.043glass 0 7.7Calcite 0 0Dolomite 0 0Magnesite 0 0Siderite 0 0CO2(g) 2 10ENDKINETICS 1Labradorite -formula CaAlSi4O8 1 -M0 30 -parms 2000 89 -steps 15 year in 10 steps -cvode true INCREMENTAL_REACTIONS trueENDINCREMENTAL_REACTIONS trueUSE solution 1USE equilibrium_phases 1USE kinetics 1USER_GRAPH 1 -headings rxn SI("Labradorite") SI("Dolomite") SI("Calcite") SI("Siderite") SI("Magnesite") KIN_DELTA("Labradorite") -axis_titles "TIME" "Saturation index" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X total_time 20 GRAPH_Y SI("Labradorite"), SI("Dolomite"), SI("Calcite"), SI("Siderite"), SI("Magnesite")30 GRAPH_SY KIN_DELTA("Labradorite") -end END
RATES 1Labradorite# from Palandri and Kharaka 2004# experimental condition range T=25-250C, pH=0.5-6-start1 rem unit should be mol,kgw-1 and second-12 rem parm(1) is surface area in the unit of m2/kgw3 rem calculation of surface area can be found in the note4 rem M is current moles of minerals. M0 is the initial moles of minerals5 rem parm(2) is a correction factor10 rem acid solution parameters11 a1=5.01E-01 12 E1=4206413 n1=0.62620 rem neutral solution parameters21 a2=1.00E-03 22 E2=4515530 rem base solution parameters31 a3=5.62E-10 32 E3=4598833 n2=-0.78236 rem rate=0 if no minerals and undersaturated40 SR_mineral=SR("labradorite")41 if (M<0) then goto 20042 if (M=0 and SR_mineral<1) then goto 20043 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.6750 if (SA<=0) then SA=160 R=8.3145175 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 #acid rate expression90 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save molesPHASESFix_pee- = e-log_k 0.0glassSiTi0.024Al0.358Fe0.188Mg0.281Ca0.264Na0.079K0.008O3.370 + 2.644H+ = 0.358Al+3 + 0.008K+ + 0.079Na+ + 0.264Ca+2 + 0.281Mg+2 + 0.024Ti(OH)4 + 0.171Fe+2 + 0.017Fe+3 + SiO2 + 1.274H2O -log_k -2.60 -delta_h 30.3 kj/molLabradorite #Na0.4Ca0.6Al1.6Si2.4O8 + 3.2H2O = 0.4Na+ + 0.6Ca+2 + 1.6Al(OH)4- + 2.4SiO2 Na0.4Ca0.6Al1.6Si2.4O8 = 0.4Na+ + 0.6Ca+2 + 1.6AlO2- + 2.4SiO2 -log_k -20.0702 -analytic -92.306 0.0 -2947.59 33.017 318144 -35.495E-6ENDSOLUTION 1pH 7.5Na 1Ca 0.6K 0.1Mg 0.02Fe 0.0012Cl 0.3S 0.1 as SO4-2Si 0.2Al 0.001Alkalinity 2 as HCO3use SOLUTION 1solid_solutions 1 two solid solutionPigeonite-comp Enstatite 6.9752-comp Ferrosilite 5.6352-comp Wollastonite 5.4496ENDEQUILIBRIUM_PHASES 1Magnetite 0 0.043glass 0 7.7Calcite 0 0Dolomite 0 0Magnesite 0 0Siderite 0 0CO2(g) 2 10ENDKINETICS 1Labradorite -formula CaAlSi4O8 1 -M0 30 -parms 2000 89 #-steps 4.725e8 in 10 steps -steps 1 3 10 30 100 300 1e3 3e3 1e4 3e4 1e5 -cvode trueENDINCREMENTAL_REACTIONS trueUSE solution 1USE equilibrium_phases 1USE kinetics 1USER_GRAPH 1 -headings rxn SI("Labradorite") SI("Dolomite") SI("Calcite") SI("Siderite") \ SI("Magnesite") Rate("Labradorite") -axis_titles "TIME, hours" "Saturation index" "Rate, mol/s" -axis_scale x_axis auto auto auto auto log -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X total_time/360020 GRAPH_Y SI("Labradorite"), SI("Dolomite"), SI("Calcite"), SI("Siderite"), SI("Magnesite")30 GRAPH_SY KIN_DELTA("Labradorite")/KIN_TIME -end -active true END
EQUILIBRIUM_PHASES 1Magnetite 0 0.043Glass 0 7.7Labradorite0 10.0Calcite 0 0Dolomite 0 0Magnesite 0 0Siderite 0 0END EQUILIBRIUM_PHASES 2CO2(g) 2 10END KINETICS 1Labradorite -formula CaAlSi4O8 1 -m 30 -m0 30 -parms 2000 89 -tol 1e-08Glass -formula SiTi0.024Al0.358Fe0.188Mg0.281Ca0.264Na0.079K0.008O3.370 1 -m 10 -m0 10 -parms 500 20 -tol 1e-08
RATES 1Labradorite-start1 rem unit should be mol,kgw-1 and second-12 rem parm(1) is surface area in the unit of m2/kgw3 rem calculation of surface area can be found in the note4 rem M is current moles of minerals. M0 is the initial moles of minerals5 rem parm(2) is a correction factor10 rem acid solution parameters11 a1=5.01E-0112 E1=4206413 n1=0.62620 rem neutral solution parameters21 a2=1.00E-0322 E2=4515530 rem base solution parameters31 a3=5.62E-1032 E3=4598833 n2=-0.78236 rem rate=0 if no minerals and undersaturated40 SR_mineral=SR("labradorite")41 if (M<0) then goto 20042 if (M=0 and SR_mineral<1) then goto 20043 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.6750 if (SA<=0) then SA=160 R=8.3145175 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 #acid rate expression90 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save moles-endGlass-start2 if (PARM(1) = 0) then goto 3 else goto 53 if PARM(3) = 0 then S = PARM(2) * m * 122.566 else S = m0 * ((m/m0)^(2/3)) * 122.566 * PARM(2)4 GOTO 10005 S = PARM(2)*TOT("water")1000 if (m0<=0) then go to 50001001 Aa = 1.08e-4 #mol.m-2.s-11003 Ea = 21500 #J.mol-11006 R = 8.3144 #J.deg-1.mol-11007 ACTI = (ACT ("H+")^3)/(ACT("Al+3"))1008 n = 1/31009 Sig = 12000 rplus = Aa * ACTI^n * exp(-Ea/ (R * Tk)) * S3000 rate = rplus * (1 - (SR ("Glass")^(1/Sig)))4000 moles = rate * time5000 save moles-endPHASESGlass SiTi0.024Al0.358Fe0.188Mg0.281Ca0.264Na0.079K0.008O3.370 + 2.644H+ = 0.358Al+3 + 0.264Ca+2 + 0.171Fe+2 + 0.017Fe+3 + 1.274H2O + 0.008K+ + 0.281Mg+2 + 0.079Na+ + SiO2 + 0.024Ti(OH)4 log_k -2.6 delta_h 30.3 kJ -analytic 77.82514814711445 0.032450265390183614 -1502.5932036570116 -33.02705435543141 -216815.051931841 -7.454186812457974e-6Labradorite Na0.4Ca0.6Al1.6Si2.4O8 = 1.6AlO2- + 0.6Ca+2 + 0.4Na+ + 2.4SiO2 log_k -20.0702 -analytical_expression -92.306 0 -2947.59 33.017 318144 -3.5495e-05END
RATES 1Labradorite-start1 rem unit should be mol,kgw-1 and second-12 rem parm(1) is surface area in the unit of m2/kgw3 rem calculation of surface area can be found in the note4 rem M is current moles of minerals. M0 is the initial moles of minerals5 rem parm(2) is a correction factor10 rem acid solution parameters11 a1=5.01E-0112 E1=4206413 n1=0.62620 rem neutral solution parameters21 a2=1.00E-0322 E2=4515530 rem base solution parameters31 a3=5.62E-1032 E3=4598833 n2=-0.78236 rem rate=0 if no minerals and undersaturated40 SR_mineral=SR("labradorite")41 if (M<0) then goto 20042 if (M=0 and SR_mineral<1) then goto 20043 if (M0<=0) then SA=PARM(1) else SA=PARM(1)*(M/M0)^0.6750 if (SA<=0) then SA=160 R=8.3145175 Rate1=a1*EXP(-E1/R/TK)*ACT("H+")^n1 #acid rate expression90 Rate=(Rate1+Rate2+Rate3)*(1-Sr_mineral)*SA*parm(2)100 moles= rate*Time200 save moles-endGlass-start2 if (PARM(1) = 0) then goto 3 else goto 53 if PARM(3) = 0 then S = PARM(2) * m * 122.566 else S = m0 * ((m/m0)^(2/3)) * 122.566 * PARM(2)4 GOTO 10005 S = PARM(2)*TOT("water")1000 if (m0<=0) then go to 50001001 Aa = 1.08e-4 #mol.m-2.s-11003 Ea = 21500 #J.mol-11006 R = 8.3144 #J.deg-1.mol-11007 ACTI = (ACT ("H+")^3)/(ACT("Al+3"))1008 n = 1/31009 Sig = 12000 rplus = Aa * ACTI^n * exp(-Ea/ (R * Tk)) * S3000 rate = rplus * (1 - (SR ("Glass")^(1/Sig)))4000 moles = rate * time5000 save moles-endPHASESGlass SiTi0.024Al0.358Fe0.188Mg0.281Ca0.264Na0.079K0.008O3.370 + 2.644H+ = 0.358Al+3 + 0.264Ca+2 + 0.171Fe+2 + 0.017Fe+3 + 1.274H2O + 0.008K+ + 0.281Mg+2 + 0.079Na+ + SiO2 + 0.024Ti(OH)4 log_k -2.6 delta_h 30.3 kJ -analytic 77.82514814711445 0.032450265390183614 -1502.5932036570116 -33.02705435543141 -216815.051931841 -7.454186812457974e-6Labradorite Na0.4Ca0.6Al1.6Si2.4O8 = 1.6AlO2- + 0.6Ca+2 + 0.4Na+ + 2.4SiO2 log_k -20.0702 -analytical_expression -92.306 0 -2947.59 33.017 318144 -3.5495e-05ENDSOLUTION 1 temp 25 pH 7.5 pe 4 redox pe units mmol/kgw density 1 Al 0.001 Alkalinity 2 as HCO3 Ca 0.6 Cl 0.3 Fe 0.0012 K 0.1 Mg 0.02 Na 1 S 0.1 as SO4-2 Si 0.2 -water 1 # kguse SOLUTION 1SOLID_SOLUTIONS 1 two solid solution Pigeonite -comp Enstatite 6.9752 -comp Ferrosilite 5.6352 -comp Wollastonite 5.4496 Augite -comp Enstatite 4.5 -comp Ferrosilite 5.6 -comp Wollastonite 10.5ENDEQUILIBRIUM_PHASES 1 Calcite 0 0 Dolomite 0 0 Glass 0 10 Labradorite 0 10 Magnesite 0 0 Magnetite 0 0.043 Siderite 0 0ENDEQUILIBRIUM_PHASES 2 CO2(g) 2.5 10ENDUSE solution 1KINETICS 1Labradorite -formula CaAlSi4O8 1 -m 30 -m0 30 -parms 2000 89 -tol 1e-08Glass -formula SiTi0.024Al0.358Fe0.188Mg0.281Ca0.264Na0.079K0.008O3.370 1 -m 20 -m0 20 -parms 1000 50 -tol 1e-08-steps 1 3 10 30 100 300 1000 3000 10000 30000 100000-step_divide 1-runge_kutta 3-bad_step_max 500-cvode true-cvode_steps 100-cvode_order 5ENDINCREMENTAL_REACTIONS TrueUSE equilibrium_phases 2USE kinetics 1USE solution 1USER_GRAPH 1 -headings rxn ("Glass") ("Labradorite") ("Dolomite") ("Calcite") ("Siderite") ("Magnesite") -axis_titles "TIME, hours" "Saturation index" "" -chart_title "Saturation Index" -axis_scale x_axis auto auto auto auto log -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X total_time/360020 GRAPH_Y SI("Glass"),SI("Labradorite"), SI("Dolomite"), SI("Calcite"), SI("Siderite"), SI("Magnesite") -end -active true USER_GRAPH 2 -headings rxn ("Glass") ("Labradorite") ("Dolomite") ("Calcite") ("Siderite") ("Magnesite") -axis_titles "Time [d]" "Rate [mol/s]" "" -chart_title "Rates" -axis_scale x_axis auto auto auto auto log -initial_solutions true -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X total_time/8640020 GRAPH_Y KIN_DELTA("Glass"),KIN_DELTA("Labradorite"), KIN_DELTA("Dolomite"), KIN_DELTA("Calcite"), KIN_DELTA("Siderite"), KIN_DELTA("Magnesite") -end -active trueUSER_GRAPH 3 -headings rxn ("Ca") ("Si") ("Al") ("C4") ("Fe(2)") ("Ti") ("pH") -axis_titles "Time [Day]" "Concentration [ppm]" "pH [-]" -chart_title "Concentration & pH" -axis_scale x_axis auto auto auto auto log -axis_scale y_axis auto auto auto auto log -initial_solutions true -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X total_time/8640030 GRAPH_Y TOT("Ca"), TOT("Si"), TOT("Al"), TOT("C4"),TOT("Fe(2)"),TOT("Ti")40 GRAPH_SY -LA("H+") -end -active trueEND