Chlorite(14A)# Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3SiO2 + 12H2O -log_k 68.38 -delta_h -151.494 kcal
# MODEL VALIDATION USING CO2-CAPROCK EXPERIMENTAL DATADATABASE c:\phreeqc\database\llnl.datSOLUTION_SPECIESCO3-2 + 2 H+ = CO2 + H2O log_k 16.681 delta_h -5.738 kcal -analytical_expression 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -dw 1.92e-9 -Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 -Vm 14.58 1.84 4.14 -2.46 -3.20ENDPHASESCO2(g)CO2 = CO2 log_k -1.468 delta_h -4.776 kcal -analytical_expression 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K -P_c 72.86 # critical P, atm -Omega 0.225 # acentric factor Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3SiO2 + 12H2O -log_k 68.38 -delta_h -151.494 kcalEND SOLUTION 1 # cap rock-temperature 40.00-pH 8.1-pe 4.0-redox pe -units mg/lCa 142.9Mg 55.2Na 3777.0Cl 4826.2S(6) 785.9 # SO4--C(4) 1410.9 # HCO3--density 1 calcwater 1 # kgpressure 75.0 atmEQUILIBRIUM_PHASES 1CO2(g) 2.10 0.08345 # Partial pressure of CO2 and CO2 molsEQUILIBRIUM_PHASES 1Gypsum 0.0 0.0K-feldspar 0.0 0.0 # microlineSiderite 0.0 0.0Kaolinite 0.0 0.0 Save Solution 1Save Equilibrium_Phases 1ENDRATESQuartz -start10 REM PARM(1) = MSA (Molar surface area) [m^2/mol]20 si_qtz = SI("Quartz")30 if (M <= 0 and si_qtz < 0) then goto 20040 SA = PARM(1) * M50 if (M = 0 and si_qtz > 0) then SA = 1e-05 #nucleation60 k_acid = 070 k_neut = 10^(-13.99)*EXP(-87.60e+03/8.314*(1.0/TK-1.0/298.15))80 k_base = 090 k_rateconst = k_acid + k_neut + k_base100 r = k_rateconst * SA * (1-(10^si_qtz))190 moles = r * TIME200 SAVE moles -end Muscovite -start10 REM PARM(1) = MSA (Molar surface area) [m^2/mol]20 si_musc = SI("Muscovite")30 if (M <= 0 and si_musc < 0) then goto 20040 SA = PARM(1) * M50 if (M = 0 and si_musc > 0) then SA = 1e-05 #nucleation60 k_acid = 10^(-11.85)*EXP(-22.0e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.370)70 k_neut = 10^(-13.55)*EXP(-22.0e+03/8.314*(1.0/TK-1.0/298.15))80 k_base = 10^(-14.55)*EXP(-22.0e+03/8.314*(1.0/TK-1.0/298.15))*ACT("OH-")^(-0.220)90 k_rateconst = k_acid + k_neut + k_base100 r = k_rateconst * SA * (1-(10^si_musc))190 moles = r * TIME200 SAVE moles -end Albite -start10 REM PARM(1) = MSA (Molar surface area) [m^2/mol]20 si_alb = SI("Albite")30 if (M <= 0 and si_alb < 0) then goto 20040 SA = PARM(1) * M50 if (M = 0 and si_alb > 0) then SA = 1e-05 #nucleation60 k_acid = 10^(-10.16)*EXP(-65.00e+03/8.314*(1.0/TK-1.0/298.15))*(ACT("H+")^(0.317))70 k_neut = 10^(-12.56)*EXP(-65.0e+03/8.314*(1.0/TK-1.0/298.15))80 k_base = 10^(-15.60)*EXP(-66.50e+03/8.314*(1.0/TK-1.0/298.15))*(ACT("OH-")^(-0.471))90 k_rateconst = k_acid + k_neut + k_base100 r = k_rateconst * SA *(1-(10^si_alb))190 moles = r * TIME200 SAVE moles -end Chlorite-14A -start10 REM PARM(1) = MSA (Molar surface area) [m^2/mol]20 si_hema = SI("Chlorite")30 if (M <= 0 and si_chlo < 0) then goto 20040 SA = PARM(1) * M50 if (M = 0 and si_chlo > 0) then SA = 1e-05 #nucleation60 k_acid = 10^(-11.11)*EXP(-88.00e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.50)70 k_neut = 10^(-12.52)*EXP(-88.00e+03/8.314*(1.0/TK-1.0/298.15))80 k_base = 090 k_rateconst = k_acid + k_neut + k_base100 r = k_rateconst * SA * (1-(10^si_chlo))190 moles = r * TIME200 SAVE moles -end Calcite -start10 REM PARM(1) = MSA (Molar surface area) [m^2/mol]20 si_calc = SI("Calcite")30 if (M <= 0 and si_calc < 0) then goto 20040 SA = PARM(1) * M50 if (M = 0 and si_calc > 0) then SA = 1e-05 #nucleation60 k_acid = 10^(-0.30)*EXP(-14.40e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(1.000)70 k_neut = 10^(-5.81)*EXP(-23.50e+03/8.314*(1.0/TK-1.0/298.15))80 k_carb = 10^(-3.48)*EXP(-35.40e+03/8.314*(1.0/TK-1.0/298.15))*PR_P("CO2(g)")^(1.000)90 k_rateconst = k_acid + k_neut + k_carb100 r = k_rateconst * SA * (1-(10^si_calc))190 moles = r * TIME200 SAVE moles -end Dolomite -start10 REM PARM(1) = MSA (Molar surface area) [m^2/mol]20 si_dolo = SI("Dolomite")30 if (M <= 0 and si_dolo < 0) then goto 20040 SA = PARM(1) * M50 if (M = 0 and si_dolo > 0) then SA = 1e-05 #nucleation60 k_acid = 10^(-3.76)*EXP(-56.70e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.500)70 k_neut = 10^(-8.60)*EXP(-95.30e+03/8.314*(1.0/TK-1.0/298.15))80 k_carb = 10^(-5.37)*EXP(-45.70e+03/8.314*(1.0/TK-1.0/298.15))*PR_P("CO2(g)")^(0.500)90 k_rateconst = k_acid + k_neut + k_carb100 r = k_rateconst * SA * (1-(10^si_dolo))190 moles = r * TIME200 SAVE moles -end KINETICS 1Quartz -formula SiO2 1 -m 60.08 -m0 60.08 -parms 1.36 # RSA in m2/mol -tol 1e-08 Muscovite -formula KAl3Si3O10(OH)2 1 -m 398.71 -m0 398.71 -parms 0.00172 -tol 1e-08Albite -formula NaAlSi3O8 1 -m 263.02 -m0 263.02 -parms 7.603e-5 -tol 1e-08 Chlorite (14A) -formula Mg5Al2Si3O10(OH)8 1 -m 341.76 -m0 341.76 -parms 0.002165 -tol 1e-08 Calcite -formula CaCO3 1 -m 100.09 -m0 100.09 -parms 0.001499 -tol 1e-08 Dolomite -formula CaMg(CO3)2 1 -m 184.4 -m0 184.4 -parms 0.000976 -tol 1e-08 -steps 3 30 300 3000 30000 300000 3000000 30000000 300000000 3000000000 30000000000 300000000000 -cvode true KNOBS -convergence_tolerance 1e-10 INCREMENTAL_REACTIONS TrueUSER_GRAPH 1 -headings Time Quartz Muscovite Albite Chlorite Calcite Dolomite Gypsum K-feldspar Siderite Kaolinite -axis_titles "Log10 Time" "Mineral (mol)" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X log10(total_time)20 GRAPH_Y kin("Quartz"), kin("Muscovite"), kin("Albite"), kin("Chlorite (14A)"), kin("Calcite"), kin("Dolomite"), kin("Gypsum"), kin("K-feldspar"), kin("Siderite"), kin("Kaolinite") -end -active truePRINT-reset false-eh true-equilibrium_phases true-gas_phase true-other true-saturation_indices true-species true-totals true-selected_output trueSELECTED_OUTPUT 1 -file POROSITY_18.05.2023_001.xls -reset false -time true -step true -ph true -pe true -totals C(4) -molalities K+ Na+ Ca+2 Mg+2 HCO3- SO4-2 Cl- CO3-2 CO2 H+ Al+3 SiO2 -kinetic_reactants Quartz Muscovite Albite Chlorite (14A) Calcite DolomiteEND