DATABASE C:\Program Files (x86)\USGS\Phreeqc Interactive 3.7.3-15968\database\core10.datRATESQuartz -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Quartz") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Quartz") > 1) then SA = 1e-05 #nucleation 60 k_acid = 0 70 k_neut = 1.02e-14*EXP((-87700/8.3145)*(1/TK-1/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-SR("Quartz")) 190 moles = r * TIME 200 SAVE moles -endK-Feldspar -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("K-Feldspar") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("K-Feldspar") > 1) then SA = 1e-05 #nucleation 60 k_acid = 8.71e-11*EXP((-51700/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 3.89e-13*EXP((-38000/8.3145)*(1/Tk-1/298.15)) 80 k_base = 6.31e-22*EXP((-94100/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.5 + k_neut + k_base*act("H+")^(-0.823) 100 r = k_rateconst * SA * (1-SR("K-Feldspar")) 190 moles = r * TIME 200 SAVE moles -endKaolinite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Kaolinite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Kaolinite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 7.7e-14*EXP((-65900/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 7.7e-14*EXP((-22200/8.3145)*(1/Tk-1/298.15)) 80 k_base = 4.70e-18*EXP((-17900/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.777 + k_neut + k_base*act("H+")^(-0.472) 100 r = k_rateconst * SA * (1-SR("Kaolinite")) 190 moles = r * TIME 200 SAVE moles -endSOLUTION 1-10 temp 60 pH 7 pe 4 redox pe units mol/l density 1.021 Cl 17000 mg/L Na 8600 mg/L Ca 900 mg/L Mg 110 mg/L K 230 mg/L C(4) 440 mg/L pressure 100 -water 1 # kg INCREMENTAL_REACTIONS TrueKINETICS 1-10Quartz -formula SiO2 1 -m 402.12 -m0 402.12 -parms 4.122 -tol 1e-08K-Feldspar -formula KAlSi3O8 1 -m 2.08 -m0 2.08 -parms 19.768 -tol 1e-08SOLUTION 11-20 temp 80 pH 7 pe 4 redox pe units mol/l density 1.021 Cl 17000 mg/L Na 8600 mg/L Ca 900 mg/L Mg 110 mg/L K 230 mg/L C(4) 440 mg/L pressure 197.4 -water 1 # kg INCREMENTAL_REACTIONS TrueGAS_PHASE 11-20 -fixed_pressure -pressure 197.385 -volume 1.222 -temperature 80 H2(g) 197.385 CO2(g) 0KINETICS 11-20Quartz -formula SiO2 1 -m 402.12 -m0 402.12 -parms 4.122 -tol 1e-08Kaolinite -formula Al2Si2O5(OH)4 1 -m 1.46 -m0 1.46 -parms 299.027 -tol 1e-08K-Feldspar -formula KAlSi3O8 1 -m 2.08 -m0 2.08 -parms 19.768 -tol 1e-08-steps 31.536 3153.6 3153.6 31536 31536 31536 31536 31536 315360 315360 3153600 3153600 3153600 3153600 3153600 3153600 3153600 31536000 31536000 31536000 31536000 31536000 31536000 315360000 315360000 315360000 315360000 315360000 315360000 315360000 315360000 315360000 103280400-step_divide 1-runge_kutta 3-bad_step_max 4000-cvode true -cvode_steps 500-cvode_order 5TRANSPORT -cells 20 -length 0.005 -shifts 336 -time_step 3600 -flow_direction forward -boundary_condition flux flux -dispersivity .05 -correct_disp trueEND
RATESQuartz -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Quartz") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Quartz") > 1) then SA = 1e-05 #nucleation 60 k_acid = 0 70 k_neut = 1.02e-14*EXP((-87700/8.3145)*(1/TK-1/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-SR("Quartz")) 190 moles = r * TIME 200 SAVE moles -endK-Feldspar -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("K-Feldspar") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("K-Feldspar") > 1) then SA = 1e-05 #nucleation 60 k_acid = 8.71e-11*EXP((-51700/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 3.89e-13*EXP((-38000/8.3145)*(1/Tk-1/298.15)) 80 k_base = 6.31e-22*EXP((-94100/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.5 + k_neut + k_base*act("H+")^(-0.823) 100 r = k_rateconst * SA * (1-SR("K-Feldspar")) 190 moles = r * TIME 200 SAVE moles -endKaolinite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Kaolinite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Kaolinite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 7.7e-14*EXP((-65900/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 7.7e-14*EXP((-22200/8.3145)*(1/Tk-1/298.15)) 80 k_base = 4.70e-18*EXP((-17900/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.777 + k_neut + k_base*act("H+")^(-0.472) 100 r = k_rateconst * SA * (1-SR("Kaolinite")) 190 moles = r * TIME 200 SAVE moles -endENDSOLUTION 1-10 temp 60 pH 7 pe 4 redox pe units mol/l density 1.021 Cl 17000 mg/L Na 8600 mg/L Ca 900 mg/L Mg 110 mg/L K 230 mg/L C(4) 440 mg/L pressure 100 -water 1 # kgENDKINETICS 1-10Quartz -formula SiO2 1 -m 402.12 -m0 402.12 -parms 4.122 -tol 1e-08K-Feldspar -formula KAlSi3O8 1 -m 2.08 -m0 2.08 -parms 19.768 -tol 1e-08ENDSOLUTION 11-20 temp 80 pH 7 pe 4 redox pe units mol/l density 1.021 Cl 17000 mg/L Na 8600 mg/L Ca 900 mg/L Mg 110 mg/L K 230 mg/L C(4) 440 mg/L pressure 197.4 -water 1 # kgEND GAS_PHASE 11-20 -fixed_pressure -pressure 197.385 -volume 1.222 -temperature 80 H2(g) 197.385 CO2(g) 0ENDKINETICS 11-20Quartz -formula SiO2 1 -m 402.12 -m0 402.12 -parms 4.122 -tol 1e-08Kaolinite -formula Al2Si2O5(OH)4 1 -m 1.46 -m0 1.46 -parms 299.027 -tol 1e-08K-Feldspar -formula KAlSi3O8 1 -m 2.08 -m0 2.08 -parms 19.768 -tol 1e-08-steps 31.536 3153.6 3153.6 31536 31536 31536 31536 31536 315360 315360 3153600 3153600 3153600 3153600 3153600 3153600 3153600 31536000 31536000 31536000 31536000 31536000 31536000 315360000 315360000 315360000 315360000 315360000 315360000 315360000 315360000 315360000 103280400-step_divide 1-runge_kutta 3-bad_step_max 4000-cvode true-cvode_steps 500-cvode_order 5ENDTRANSPORT -cells 20 -length 0.005 -shifts 100 #336 -time_step 3600 -flow_direction diffusion_only -boundary_condition flux flux -punch_frequency 100 -punch_cells 1-20 -print_frequency 10 #-dispersivity .05 #-correct_disp trueUSER_GRAPH 1 -headings dist H2(aq) -axis_titles "Distance, meters" "H2(aq), Molality" "Si, molality" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X DIST20 GRAPH_Y MOL("H2")30 GRAPH_SY TOT("Si") -end -active trueEND
RATESQuartz -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Quartz") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Quartz") > 1) then SA = 1e-05 #nucleation 60 k_acid = 0 70 k_neut = 1.02e-14*EXP((-87700/8.3145)*(1/TK-1/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-SR("Quartz")) 190 moles = r * TIME 200 SAVE moles -endK-Feldspar -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("K-Feldspar") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("K-Feldspar") > 1) then SA = 1e-05 #nucleation 60 k_acid = 8.71e-11*EXP((-51700/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 3.89e-13*EXP((-38000/8.3145)*(1/Tk-1/298.15)) 80 k_base = 6.31e-22*EXP((-94100/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.5 + k_neut + k_base*act("H+")^(-0.823) 100 r = k_rateconst * SA * (1-SR("K-Feldspar")) 190 moles = r * TIME 200 SAVE moles -endKaolinite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Kaolinite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Kaolinite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 7.7e-14*EXP((-65900/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 7.7e-14*EXP((-22200/8.3145)*(1/Tk-1/298.15)) 80 k_base = 4.70e-18*EXP((-17900/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.777 + k_neut + k_base*act("H+")^(-0.472) 100 r = k_rateconst * SA * (1-SR("Kaolinite")) 190 moles = r * TIME 200 SAVE moles -endMuscovite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Muscovite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Muscovite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 1.41e-12*EXP((-22000/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 2.82e-14*EXP((-22000/8.3145)*(1/Tk-1/298.15)) 80 k_base = 2.82e-15*EXP((-22000/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.37 + k_neut + k_base*act("H+")^(-0.22) 100 r = k_rateconst * SA * (1-SR("Muscovite")) 190 moles = r * TIME 200 SAVE moles -endAlbite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Albite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Albite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 6.92e-11*EXP((-65000/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 2.75e-13*EXP((-69800/8.3145)*(1/Tk-1/298.15)) 80 k_base = 2.51e-16*EXP((-71000/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.457 + k_neut + k_base*act("H+")^(-0.572) 100 r = k_rateconst * SA * (1-SR("Albite")) 190 moles = r * TIME 200 SAVE moles -endPyrite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Pyrite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Pyrite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 3.02e-8*EXP((-56900/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 2.82e-5*EXP((-56900/8.3145)*(1/Tk-1/298.15)) 80 k_base = 0 90 k_rateconst = k_acid*act("H+")^(-0.5) + k_neut*act("O2")^0.5 + k_base*act("H+")^0 100 r = k_rateconst * SA * (1-SR("Pyrite")) 190 moles = r * TIME 200 SAVE moles -endCalcite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Calcite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Calcite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 0.5012*EXP(-14.4e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+") 70 k_neut = 1.5488e-6*EXP(-23.5e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 3.31e-4*EXP(-35.4e+03/8.314*(1.0/TK-1.0/298.15))*ACT("CO2") 90 k_rateconst = k_acid*act("H+")^1 + k_neut + k_base*act("H+")^1 100 r = k_rateconst * SA * (1-SR("Calcite")) 190 moles = r * TIME 200 SAVE moles -endSOLUTION_MASTER_SPECIES Tracer Tracer 0.0 1.0 1.0EXCHANGE_MASTER_SPECIES X X-SOLUTION_SPECIESTracer = Tracer-log_k 0.0#-delta_h -4.184 kJ#-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5#-T_c 33.2#-P_c 12.80#-Omega -0.225-dw 1.0e-9EXCHANGE_SPECIES X- = X- -log_k 0.0 Na+ + X- = NaX -log_k 0.0 -gamma 4.08 0.082 K+ + X- = KX -log_k 0.7 -gamma 3.5 0.015 -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX -log_k -0.08 -gamma 6.0 0 -delta_h 1.4 # Merriam & Thomas, 1956# !!!!!# H+ + X- = HX# -log_k 1.0# -gamma 9.0 0 Ca+2 + 2X- = CaX2 -log_k 0.8 -gamma 5.0 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 -log_k 0.6 -gamma 5.5 0.2 -delta_h 7.4 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 -log_k 0.52 -gamma 6.0 0 Fe+2 + 2X- = FeX2 -log_k 0.44 -gamma 6.0 0 Al+3 + 3X- = AlX3 -log_k 0.41 -gamma 9.0 0 AlOH+2 + 2X- = AlOHX2 -log_k 0.89 -gamma 0.0 0Selected_Output-file my1_UHS.xls-temperature true-totals C(4) C(-4) Tracer H(0) S(6) S(-2) Na Cl N N(-3)#-kinetic_phases K-feldspar Albite Kaolinite Quartz Calcite Pyrite Muscovite -gases CO2(g) CH4(g) H2S(g) H2(g) N2(g)-water-charge_balance true-ionic_strength trueSOLUTION 1-182 temp 60 pH 7 pe 4 redox pe units mol/l density 1.021 Cl 17000 mg/L Na 8600 mg/L Ca 900 mg/L Mg 110 mg/L K 230 mg/L C(4) 440 mg/L pressure 100 -water 1 # kgREACTION_TEMPERATURE 1-18260REACTION_PRESSURE 1-182100GAS_PHASE 1-182-fixed_pressure-pressure 0-temperature 60CO2(g) 0.0CH4(g) 0.0H2S(g) 0.0KINETICS 1-182Quartz -formula SiO2 1 -m 409.387 -m0 409.387 -parms 4.122 -tol 1e-08Kaolinite -formula Al2Si2O5(OH)4 1 -m 21.52 -m0 21.52 -parms 299.027 -tol 1e-08K-Feldspar -formula KAlSi3O8 1 -m 20.32 -m0 20.32 -parms 19.768 -tol 1e-08Muscovite -formula KAl3Si3O10(OH)2 1 -m 11.4 -m0 11.4 -parms 25.607 -tol 1e-08Pyrite -formula FeS2 1 -m 62.3 -m0 62.3 -parms 4.354 -tol 1e-08Calcite -formula CaCO3 1 -m 27.248 -m0 27.248 -parms 6.715 -tol 1e-08EXCHANGE 1-182-equilibrate with solution 1-182X 3.907ENDSOLUTION 183-850 # reservoir rock temp 80 pH 7 pe 4 redox pe units mol/l density 1.021 Cl 17000 mg/L Na 8600 mg/L Ca 900 mg/L Mg 110 mg/L K 230 mg/L C(4) 440 mg/L pressure 197.4 -water 1 # kg Tracer 0.001GAS_PHASE 183-850-fixed_pressure-pressure 197.4-temperature 80.0-volume 3.0H2(g) 184.56CH4(g) 3.56N2(g) 0.4CO2(g) 1.48H2S(g) 0.0REACTION_PRESSURE 183-85080.0REACTION_TEMPERATURE 183-85080.0EXCHANGE 183-850-equilibrate with solution 183-850X 3.722INCREMENTAL_REACTIONS TrueKINETICS 183-850Quartz -formula SiO2 1 -m 402.12 -m0 402.12 -parms 4.122 -tol 1e-08Kaolinite -formula Al2Si2O5(OH)4 1 -m 1.46 -m0 1.46 -parms 299.027 -tol 1e-08K-Feldspar -formula KAlSi3O8 1 -m 2.08 -m0 2.08 -parms 19.768 -tol 1e-08-steps 94608000 94608000 94608000 94608000 94608000 94608000 94608000 94608000 94608000 94608000-step_divide 1-runge_kutta 3-bad_step_max 4000-cvode true -cvode_steps 500-cvode_order 5ENDTRANSPORT-cells 850-shifts 10-flow_direction diffusion_only-time_step 94608000 -multi_d true-length 1488*1.0-dispersivity 1488*0.0-boundary_conditions flux fluxEND
-kinetic_phases K-feldspar Albite Kaolinite Quartz Calcite Pyrite Muscovite
DATABASE C:\Program Files (x86)\USGS\Phreeqc Interactive 3.7.3-15968\database\core10.datRATESQuartz -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Quartz") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Quartz") > 1) then SA = 1e-05 #nucleation 60 k_acid = 0 70 k_neut = 1.02e-14*EXP((-87700/8.3145)*(1/TK-1/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-SR("Quartz")) 190 moles = r * TIME 200 SAVE moles -endK-Feldspar -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("K-Feldspar") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("K-Feldspar") > 1) then SA = 1e-05 #nucleation 60 k_acid = 8.71e-11*EXP((-51700/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 3.89e-13*EXP((-38000/8.3145)*(1/Tk-1/298.15)) 80 k_base = 6.31e-22*EXP((-94100/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.5 + k_neut + k_base*act("H+")^(-0.823) 100 r = k_rateconst * SA * (1-SR("K-Feldspar")) 190 moles = r * TIME 200 SAVE moles -endKaolinite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Kaolinite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Kaolinite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 7.7e-14*EXP((-65900/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 7.7e-14*EXP((-22200/8.3145)*(1/Tk-1/298.15)) 80 k_base = 4.70e-18*EXP((-17900/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.777 + k_neut + k_base*act("H+")^(-0.472) 100 r = k_rateconst * SA * (1-SR("Kaolinite")) 190 moles = r * TIME 200 SAVE moles -endMuscovite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Muscovite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Muscovite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 1.41e-12*EXP((-22000/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 2.82e-14*EXP((-22000/8.3145)*(1/Tk-1/298.15)) 80 k_base = 2.82e-15*EXP((-22000/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.37 + k_neut + k_base*act("H+")^(-0.22) 100 r = k_rateconst * SA * (1-SR("Muscovite")) 190 moles = r * TIME 200 SAVE moles -endAlbite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Albite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Albite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 6.92e-11*EXP((-65000/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 2.75e-13*EXP((-69800/8.3145)*(1/Tk-1/298.15)) 80 k_base = 2.51e-16*EXP((-71000/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.457 + k_neut + k_base*act("H+")^(-0.572) 100 r = k_rateconst * SA * (1-SR("Albite")) 190 moles = r * TIME 200 SAVE moles -endPyrite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Pyrite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Pyrite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 3.02e-8*EXP((-56900/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 2.82e-5*EXP((-56900/8.3145)*(1/Tk-1/298.15)) 80 k_base = 0 90 k_rateconst = k_acid*act("H+")^(-0.5) + k_neut*act("O2")^0.5 + k_base*act("H+")^0 100 r = k_rateconst * SA * (1-SR("Pyrite")) 190 moles = r * TIME 200 SAVE moles -endCalcite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Calcite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Calcite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 0.5012*EXP(-14.4e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+") 70 k_neut = 1.5488e-6*EXP(-23.5e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 3.31e-4*EXP(-35.4e+03/8.314*(1.0/TK-1.0/298.15))*ACT("CO2") 90 k_rateconst = k_acid*act("H+")^1 + k_neut + k_base*act("H+")^1 100 r = k_rateconst * SA * (1-SR("Calcite")) 190 moles = r * TIME 200 SAVE moles -endSOLUTION_MASTER_SPECIES Tracer Tracer 0.0 1.0 1.0EXCHANGE_MASTER_SPECIES X X-SOLUTION_SPECIESTracer = Tracer-log_k 0.0#-delta_h -4.184 kJ#-analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5#-T_c 33.2#-P_c 12.80#-Omega -0.225-dw 1.0e-9EXCHANGE_SPECIES X- = X- -log_k 0.0 Na+ + X- = NaX -log_k 0.0 -gamma 4.08 0.082 K+ + X- = KX -log_k 0.7 -gamma 3.5 0.015 -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX -log_k -0.08 -gamma 6.0 0 -delta_h 1.4 # Merriam & Thomas, 1956# !!!!!# H+ + X- = HX# -log_k 1.0# -gamma 9.0 0 Ca+2 + 2X- = CaX2 -log_k 0.8 -gamma 5.0 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 -log_k 0.6 -gamma 5.5 0.2 -delta_h 7.4 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 -log_k 0.52 -gamma 6.0 0 Fe+2 + 2X- = FeX2 -log_k 0.44 -gamma 6.0 0 Al+3 + 3X- = AlX3 -log_k 0.41 -gamma 9.0 0 AlOH+2 + 2X- = AlOHX2 -log_k 0.89 -gamma 0.0 0Selected_Output-file my1_UHS.xls-temperature true-totals C(4) C(-4) Tracer H(0) S(6) S(-2) Na Cl N N(-3)#-kinetic_phases K-feldspar Albite Kaolinite Quartz Calcite Pyrite Muscovite -gases CO2(g) CH4(g) H2S(g) H2(g) N2(g)-water-charge_balance true-ionic_strength trueSOLUTION 1-10 temp 60 pH 7 pe 4 redox pe units mol/l density 1.021 Cl 17000 mg/L Na 8600 mg/L Ca 900 mg/L Mg 110 mg/L K 230 mg/L C(4) 440 mg/L pressure 100 -water 1 # kgREACTION_TEMPERATURE 1-1060REACTION_PRESSURE 1-10100GAS_PHASE 1-10-fixed_pressure-pressure 0-temperature 60CO2(g) 0.0CH4(g) 0.0H2S(g) 0.0KINETICS 1-10Quartz -formula SiO2 1 -m 409.387 -m0 409.387 -parms 4.122 -tol 1e-08Kaolinite -formula Al2Si2O5(OH)4 1 -m 21.52 -m0 21.52 -parms 299.027 -tol 1e-08K-Feldspar -formula KAlSi3O8 1 -m 20.32 -m0 20.32 -parms 19.768 -tol 1e-08Muscovite -formula KAl3Si3O10(OH)2 1 -m 11.4 -m0 11.4 -parms 25.607 -tol 1e-08Pyrite -formula FeS2 1 -m 62.3 -m0 62.3 -parms 4.354 -tol 1e-08Calcite -formula CaCO3 1 -m 27.248 -m0 27.248 -parms 6.715 -tol 1e-08EXCHANGE 1-10-equilibrate with solution 1-10X 3.907ENDSOLUTION 11-20 # reservoir rock temp 80 pH 7 pe 4 redox pe units mol/l density 1.021 Cl 17000 mg/L Na 8600 mg/L Ca 900 mg/L Mg 110 mg/L K 230 mg/L C(4) 440 mg/L pressure 197.4 -water 1 # kg Tracer 0.001GAS_PHASE 11-20-fixed_pressure-pressure 197.4-temperature 80.0-volume 1.222H2(g) 184.56CH4(g) 3.56N2(g) 0.4CO2(g) 1.48H2S(g) 0.0REACTION_PRESSURE 11-2080.0REACTION_TEMPERATURE 11-2080.0EXCHANGE 11-20-equilibrate with solution 11-20X 3.722INCREMENTAL_REACTIONS TrueKINETICS 11-20Quartz -formula SiO2 1 -m 402.12 -m0 402.12 -parms 4.122 -tol 1e-08Kaolinite -formula Al2Si2O5(OH)4 1 -m 1.46 -m0 1.46 -parms 299.027 -tol 1e-08K-Feldspar -formula KAlSi3O8 1 -m 2.08 -m0 2.08 -parms 19.768 -tol 1e-08-steps 94608000 94608000 94608000 94608000 94608000 94608000 94608000 94608000 94608000 94608000-step_divide 1-runge_kutta 3-bad_step_max 4000-cvode true -cvode_steps 500-cvode_order 5ENDTRANSPORT-cells 20-shifts 10-flow_direction diffusion_only-time_step 94608000 -multi_d true-length 1488*1.0-dispersivity 1488*0.0-boundary_conditions flux fluxEND
DATABASE Amm.datPHASESMuscovite# KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 SiO2 + 6 H2OKAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 log_k 13.5858 -delta_H -243.224 kJ/mol# deltafH -1427.41 kcal/mol -analytic 3.3085e1 -1.2425e-2 1.2477e4 -2.0865e1 -5.4692e5# Range 0-350 -Vm 140.71# Extrapol supcrt92# Ref HDN+78ENDRATESQuartz -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Quartz") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Quartz") > 1) then SA = 1e-05 #nucleation 60 k_acid = 0 70 k_neut = 1.02e-14*EXP((-87700/8.3145)*(1/TK-1/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-SR("Quartz")) 190 moles = r * TIME 200 SAVE moles -endK-Feldspar -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("K-Feldspar") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("K-Feldspar") > 1) then SA = 1e-05 #nucleation 60 k_acid = 8.71e-11*EXP((-51700/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 3.89e-13*EXP((-38000/8.3145)*(1/Tk-1/298.15)) 80 k_base = 6.31e-22*EXP((-94100/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.5 + k_neut + k_base*act("H+")^(-0.823) 100 r = k_rateconst * SA * (1-SR("K-Feldspar")) 190 moles = r * TIME 200 SAVE moles -endKaolinite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Kaolinite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Kaolinite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 7.7e-14*EXP((-65900/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 7.7e-14*EXP((-22200/8.3145)*(1/Tk-1/298.15)) 80 k_base = 4.70e-18*EXP((-17900/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.777 + k_neut + k_base*act("H+")^(-0.472) 100 r = k_rateconst * SA * (1-SR("Kaolinite")) 190 moles = r * TIME 200 SAVE moles -endMuscovite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Muscovite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Muscovite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 1.41e-12*EXP((-22000/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 2.82e-14*EXP((-22000/8.3145)*(1/Tk-1/298.15)) 80 k_base = 2.82e-15*EXP((-22000/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.37 + k_neut + k_base*act("H+")^(-0.22) 100 r = k_rateconst * SA * (1-SR("Muscovite")) 190 moles = r * TIME 200 SAVE moles -endAlbite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Albite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Albite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 6.92e-11*EXP((-65000/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 2.75e-13*EXP((-69800/8.3145)*(1/Tk-1/298.15)) 80 k_base = 2.51e-16*EXP((-71000/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.457 + k_neut + k_base*act("H+")^(-0.572) 100 r = k_rateconst * SA * (1-SR("Albite")) 190 moles = r * TIME 200 SAVE moles -endPyrite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Pyrite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Pyrite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 3.02e-8*EXP((-56900/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 2.82e-5*EXP((-56900/8.3145)*(1/Tk-1/298.15)) 80 k_base = 0 90 k_rateconst = k_acid*act("H+")^(-0.5) + k_neut*act("O2")^0.5 + k_base*act("H+")^0 100 r = k_rateconst * SA * (1-SR("Pyrite")) 190 moles = r * TIME 200 SAVE moles -endCalcite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Calcite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Calcite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 0.5012*EXP(-14.4e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+") 70 k_neut = 1.5488e-6*EXP(-23.5e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 3.31e-4*EXP(-35.4e+03/8.314*(1.0/TK-1.0/298.15))*ACT("CO2") 90 k_rateconst = k_acid*act("H+")^1 + k_neut + k_base*act("H+")^1 100 r = k_rateconst * SA * (1-SR("Calcite")) 190 moles = r * TIME 200 SAVE moles -endEXCHANGE_MASTER_SPECIES X X-EXCHANGE_SPECIES X- = X- -log_k 0.0 Na+ + X- = NaX -log_k 0.0 -gamma 4.08 0.082 K+ + X- = KX -log_k 0.7 -gamma 3.5 0.015 -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX -log_k -0.08 -gamma 6.0 0 -delta_h 1.4 # Merriam & Thomas, 1956# !!!!!# H+ + X- = HX# -log_k 1.0# -gamma 9.0 0 Ca+2 + 2X- = CaX2 -log_k 0.8 -gamma 5.0 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 -log_k 0.6 -gamma 5.5 0.2 -delta_h 7.4 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 -log_k 0.52 -gamma 6.0 0 Fe+2 + 2X- = FeX2 -log_k 0.44 -gamma 6.0 0 Al+3 + 3X- = AlX3 -log_k 0.41 -gamma 9.0 0 AlOH+2 + 2X- = AlOHX2 -log_k 0.89 -gamma 0.0 0ENDSOLUTION 1-10 temp 60 pH 7 pe 4 redox pe units mol/l density 1.021 Cl 17000 mg/L Na 8600 mg/L Ca 900 mg/L Mg 110 mg/L K 230 mg/L C(4) 440 mg/L S(6) 1 mg/L pressure 100 -water 1 # kgENDREACTION_TEMPERATURE 1-1060ENDREACTION_PRESSURE 1-10100ENDGAS_PHASE 1-10-fixed_pressure-pressure 0-temperature 60CO2(g) 0.0CH4(g) 0.0H2S(g) 0.0ENDEXCHANGE 1-10-equilibrate with solution 1X 3.907ENDRUN_CELL-cell 1-10ENDKINETICS 1-10Quartz -formula SiO2 1 -m 409.387 -m0 409.387 -parms 4.122 -tol 1e-08Kaolinite -formula Al2Si2O5(OH)4 1 -m 21.52 -m0 21.52 -parms 299.027 -tol 1e-08K-Feldspar -formula KAlSi3O8 1 -m 20.32 -m0 20.32 -parms 19.768 -tol 1e-08Muscovite -formula KAl3Si3O10(OH)2 1 -m 11.4 -m0 11.4 -parms 25.607 -tol 1e-08Pyrite -formula FeS2 1 -m 62.3 -m0 62.3 -parms 4.354 -tol 1e-08Calcite -formula CaCO3 1 -m 27.248 -m0 27.248 -parms 6.715 -tol 1e-08-cvodeENDSOLUTION 11-20 # reservoir rock temp 80 pH 7 pe 4 redox pe units mol/l density 1.021 Cl 17000 mg/L Na 8600 mg/L Ca 900 mg/L Mg 110 mg/L K 230 mg/L C(4) 440 mg/L S(6) 1 mg/L pressure 197.4 -water 1 # kg Hdg 0.001ENDGAS_PHASE 11-20-fixed_pressure-pressure 197.4-temperature 80.0-volume 1.222H2(g) 184.56#Hdg(g) 184.56CH4(g) 3.56N2(g) 0.4CO2(g) 1.48H2S(g) 0.0ENDREACTION_PRESSURE 11-2080.0ENDREACTION_TEMPERATURE 11-2080.0ENDEXCHANGE 11-20-equilibrate with solution 11-20X 3.722ENDRUN_CELLS-cell 11-20ENDKINETICS 11-20Quartz -formula SiO2 1 -m 402.12 -m0 402.12 -parms 4.122 -tol 1e-08Kaolinite -formula Al2Si2O5(OH)4 1 -m 1.46 -m0 1.46 -parms 299.027 -tol 1e-08K-Feldspar -formula KAlSi3O8 1 -m 2.08 -m0 2.08 -parms 19.768 -tol 1e-08#-steps 94608000 94608000 94608000 94608000 94608000 94608000 94608000 94608000 94608000 94608000#-step_divide 1#-runge_kutta 3#-bad_step_max 4000-cvode true-cvode_steps 500-cvode_order 5ENDTRANSPORT-cells 20-shifts 10-flow_direction diffusion_only-time_step 94608000 -multi_d true-length 1.0-dispersivity 0.0-punch_cells 1-20-punch_frequency 10-boundary_conditions flux fluxUSER_GRAPH10 GRAPH_X dist20 GRAPH_Y MOL("H2")30 GRAPH_SY TOT("Hdg")END
SOLUTION_MASTER_SPECIESHdg Hdg 0 Hdg 2.016 # H2 gasH H+ -1 H 1.0079H(0) H2 0 H H(+1) H+ -1 0SOLUTION_SPECIESHdg = Hdg # H2 -dw 5.13e-9 -Vm 6.52 0.78 0.12 # supcrtH2 = H2 log_k -3.1050 -delta_H -4.184 kJ/mol -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -dw 5.13e-9PHASESHdg(g) Hdg = Hdg -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2 ; -P_c 12.80 ; -Omega -0.225H2(g) H2 = H2 log_k -3.1050 -delta_H -4.184 kJ/mol# deltafH 0 kcal/mol -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5# Range 0-350 -T_c 33.2 # K -P_c 12.80 -Omega 0.225 # phreeqc.dat# Extrapol supcrt92# Ref WEP+82, Kel60RATESQuartz -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Quartz") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Quartz") > 1) then SA = 1e-05 #nucleation 60 k_acid = 0 70 k_neut = 1.02e-14*EXP((-87700/8.3145)*(1/TK-1/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-SR("Quartz")) 190 moles = r * TIME 200 SAVE moles -endK-Feldspar -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("K-Feldspar") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("K-Feldspar") > 1) then SA = 1e-05 #nucleation 60 k_acid = 8.71e-11*EXP((-51700/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 3.89e-13*EXP((-38000/8.3145)*(1/Tk-1/298.15)) 80 k_base = 6.31e-22*EXP((-94100/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.5 + k_neut + k_base*act("H+")^(-0.823) 100 r = k_rateconst * SA * (1-SR("K-Feldspar")) 190 moles = r * TIME 200 SAVE moles -endKaolinite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Kaolinite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Kaolinite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 7.7e-14*EXP((-65900/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 7.7e-14*EXP((-22200/8.3145)*(1/Tk-1/298.15)) 80 k_base = 4.70e-18*EXP((-17900/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.777 + k_neut + k_base*act("H+")^(-0.472) 100 r = k_rateconst * SA * (1-SR("Kaolinite")) 190 moles = r * TIME 200 SAVE moles -endMuscovite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Muscovite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Muscovite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 1.41e-12*EXP((-22000/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 2.82e-14*EXP((-22000/8.3145)*(1/Tk-1/298.15)) 80 k_base = 2.82e-15*EXP((-22000/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.37 + k_neut + k_base*act("H+")^(-0.22) 100 r = k_rateconst * SA * (1-SR("Muscovite")) 190 moles = r * TIME 200 SAVE moles -endAlbite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Albite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Albite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 6.92e-11*EXP((-65000/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 2.75e-13*EXP((-69800/8.3145)*(1/Tk-1/298.15)) 80 k_base = 2.51e-16*EXP((-71000/8.3145)*(1/Tk-1/298.15)) 90 k_rateconst = k_acid*act("H+")^0.457 + k_neut + k_base*act("H+")^(-0.572) 100 r = k_rateconst * SA * (1-SR("Albite")) 190 moles = r * TIME 200 SAVE moles -endPyrite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Pyrite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Pyrite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 3.02e-8*EXP((-56900/8.3145)*(1/Tk-1/298.15)) 70 k_neut = 2.82e-5*EXP((-56900/8.3145)*(1/Tk-1/298.15)) 80 k_base = 0 90 k_rateconst = k_acid*act("H+")^(-0.5) + k_neut*act("O2")^0.5 + k_base*act("H+")^0 100 r = k_rateconst * SA * (1-SR("Pyrite")) 190 moles = r * TIME 200 SAVE moles -endCalcite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 30 if (M <= 0 and SR("Calcite") < 1) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and SR("Calcite") > 1) then SA = 1e-05 #nucleation 60 k_acid = 0.5012*EXP(-14.4e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+") 70 k_neut = 1.5488e-6*EXP(-23.5e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 3.31e-4*EXP(-35.4e+03/8.314*(1.0/TK-1.0/298.15))*ACT("CO2") 90 k_rateconst = k_acid*act("H+")^1 + k_neut + k_base*act("H+")^1 100 r = k_rateconst * SA * (1-SR("Calcite")) 190 moles = r * TIME 200 SAVE moles -endENDEXCHANGE_MASTER_SPECIES X X-EXCHANGE_SPECIES X- = X- -log_k 0.0 Na+ + X- = NaX -log_k 0.0 -gamma 4.08 0.082 K+ + X- = KX -log_k 0.7 -gamma 3.5 0.015 -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX -log_k -0.08 -gamma 6.0 0 -delta_h 1.4 # Merriam & Thomas, 1956# !!!!!# H+ + X- = HX# -log_k 1.0# -gamma 9.0 0 Ca+2 + 2X- = CaX2 -log_k 0.8 -gamma 5.0 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 -log_k 0.6 -gamma 5.5 0.2 -delta_h 7.4 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 -log_k 0.52 -gamma 6.0 0 Fe+2 + 2X- = FeX2 -log_k 0.44 -gamma 6.0 0 Al+3 + 3X- = AlX3 -log_k 0.41 -gamma 9.0 0 AlOH+2 + 2X- = AlOHX2 -log_k 0.89 -gamma 0.0 0Selected_Output-file Equi,H2,Hdg with modified database.xls-temperature true-totals C(4) C(-4) H(0) Hdg H2 S(6) Na Cl N N(-3)-equilibrium_phases Quartz Kaolinite K-Feldspar Muscovite Pyrite Calcite#-kinetics H2-gases CO2(g) CH4(g) H2S(g) H2(g) N2(g)-water-charge_balance true-ionic_strength true#USER_PUNCH #-headings Time(year) KIN(Quartz) KIN_DELTA(Quartz)KIN(Kaolinite) KIN_DELTA(Kaolinite)KIN(K-Feldspar) KIN_DELTA(K-Feldspar)KIN(Muscovite) KIN_DELTA(Muscovite)KIN(Pyrite) KIN_DELTA(Pyrite)KIN(Calcite) KIN_DELTA(Calcite) #-start #10 punch TOTAL_TIME/31536000 KIN("Quartz") KIN_DELTA("Quartz")KIN("Kaolinite") KIN_DELTA("Kaolinite")KIN("K-Feldspar") KIN_DELTA("K-Feldspar") KIN("Muscovite") KIN_DELTA("Muscovite")KIN("Pyrite") KIN_DELTA("Pyrite")KIN("Calcite") KIN_DELTA("Calcite") #-endENDSOLUTION 1-40 temp 60 pH 7 pe 4 redox pe units mol/l density 1.021 Cl 17000 mg/L Na 8600 mg/L Ca 900 mg/L Mg 110 mg/L K 230 mg/L C(4) 440 mg/L -water 1 # kgREACTION_TEMPERATURE 1-4060REACTION_PRESSURE 1-40148EQUILIBRIUM_PHASES 1-40 Quartz 0 409.387 Kaolinite 0 21.52 K-Feldspar 0 20.32 Muscovite 0 11.4 Pyrite 0 62.3 Calcite 0 27.248 Brucite 0 0 Diopside 0 0 Grossular 0 0 Monticellite 0 0 Portlandite 0 0 Troilite 0 0ENDEXCHANGE 1-40-equilibrate with solution 1-40X 3.907ENDSOLUTION 41-147 # reservoir rock temp 80 pH 7 pe 4 redox pe units mol/l density 1.021 Cl 17000 mg/L Na 8600 mg/L Ca 900 mg/L Mg 110 mg/L K 230 mg/L C(4) 440 mg/L pressure 197.4 -water 1 # kg Hdg 0.01REACTION_PRESSURE 41-147 80.0REACTION_TEMPERATURE 41-147 80.0GAS_PHASE 41-147 -fixed_pressure-pressure 197.4-temperature 80.0-volume 1.222H2(g) 197.4EQUILIBRIUM_PHASES 41-147 Quartz 0 402.12 Kaolinite 0 1.46 K-Feldspar 0 2.08 Brucite 0 0 Celadonite 0 0 Clinochlore-14A 0 0 Lizardite 0 0 Mesolite 0 0 Phlogopite 0 0 Talc 0 0EXCHANGE 41-147 -equilibrate with solution 41-147 X 3.722TRANSPORT-cells 147-shifts 100-flow_direction diffusion_only-time_step 31536000 # (1 Year)-multi_d true-length 147*1.0-dispersivity 147*0.0-boundary_conditions flux fluxEND
H2O = H2 + 0.5 O2 -CO2_llnl_gamma log_k -46.1066 -delta_H 275.588 kJ/mol# deltafH -1 kcal/mol -analytic 6.6835e1 1.7172e-2 -1.8849e4 -2.4092e1 4.2501e5# Range 0-350 -Vm 5.1427 4.7758 3.8729 -2.9764 -0.209# Extrapol supcrt92# Ref SHS89
-dw 5.13e-9