Welcome
Guest
Forum Home
Login
Register
PhreeqcUsers Discussion Forum
»
The PhreeqcUsers Forum
»
Introduce yourself (don't post questions here)
»
CO2 precipitation and mineralization of Steel Slag
« previous
next »
Print
Pages: [
1
]
Go Down
Author
Topic: CO2 precipitation and mineralization of Steel Slag (Read 1998 times)
Erdinc
Frequent Contributor
Posts: 17
CO2 precipitation and mineralization of Steel Slag
«
on:
07/04/23 10:02 »
Dear Good Expert Users,
I am working on a project with my mentor (Dr Peter W) where I am modelling residual slag heaps to capture CO2. I have been working on building equilibrium and kinetic models to demonstrate the slag mineralogy and their reaction to CO2 by weathering. I also wanted to see how much CO2 can be precipitated, dissolved/soluble and trapped, CO2 solubility and pH evolution against time, Mineral evolution against time, and Concentration of changes on the given/specific minerals and their reaction on CO2 capture is my interest. I am attaching examples of my Equilibrium and Kinetic study. Any help and advice are much appreciated.
Equilibrium:
TITLE Kardemir Slag consisting of given proportions of Portlandite(Ca(OH)2), Calcite(CaCO3), Brucite(Mg(OH)2) and Calcio-olivine-Larnite-Dicalcium Silicate( Ca2SiO4)-SS-Antimagnetic
TITLE Set up water to be introduced into porous slag sample
TITLE Slag SOLUTION Use of Kardemir water25062022
SOLUTION 0 Water injected into slag pores with atmospheric CO2
temp 25
pressure 1
pH 8.5
pe 4
redox pe
units ppm
density 1
Alkalinity 270
Ca 180
Cl 120 charge
Fe 0.3
N(-3) 0.5
P 0.3
S(6) 80
-water 1 # kg
#GAS_PHASE 0 Atm CO2 added
#-fixed_pressure
#-pressure 1
#-volume 1
#-temperature 25
#CO2(g) -0.0004189
#REACTION 0
# NaCl 2
# Halite 2
# 0.5 moles in 4 steps
REACTION_TEMPERATURE 0
25.0 40.0 in 4 steps
EQUILIBRIUM_PHASES 0 Define amounts of phases in assemblage- Equilibrate water with calcite and added CO2 to equilibrate
# Calcite 0 10
CO2(g) -3.378 10
USER_GRAPH 0
-headings Temperature Calcite Aragonite Fe(OH)3 Ferrite-Ca Goethite Hematite Hydroxyapatite Magnetite Monohydrocalcite Vaterite Anhydrite Ankerite Bassanite C Ca CO2(g) Fe Fe(OH)2 Fe2(SO4)3 FeO Ferrite-Dicalcium FeSO4 Gypsum Hydrophilite Lawrencite Lime Melanterite Molysite P Portlandite Siderite Wustite
-axis_titles "Temperature, in degrees celsius" "Saturation index" "pH"
-chart_title "Calcite, Aragonite, Fe(OH)3, Ferrite-Ca, Goethite, Hematite, Hydroxyapatite, Magnetite, Monohydrocalcite, Vaterite, Anhydrite, Ankerite, Bassanite, C, Ca, CO2(g), Fe, Fe(OH)2, Fe2(SO4)3, FeO, Ferrite-Dicalcium, FeSO4, Gypsum, Hydrophilite, Lawrencite, Lime, Melanterite, Molysite, P, Portlandite, Siderite, Wustite, Stability, pH"
-axis_scale x_axis 25 40 4 4
-initial_solutions false
-connect_simulations true
-plot_concentration_vs x
-start
10 graph_x TC
20 graph_y SI("Calcite"),SI("Aragonite"), SI("Fe(OH)3"),SI("Ferrite-Ca"), SI("Goethite"), SI("Hematite"), SI("Hydroxyapatite"), SI("Magnetite"), SI("Monohydrocalcite"), SI("Vaterite"), SI("Anhydrite"), SI("Ankerite"), SI("Bassanite"), SI("C"), SI("Ca"), SI("CO2(g)"), SI("Fe"), SI("Fe(OH)2"), SI("Fe2(SO4)3"), SI("FeO"), SI("Ferrite-Dicalcium"), SI("FeSO4"), SI("Gypsum"), SI("Hydrophilite"), SI("Lawrencite"), SI("Lime"), SI("Melanterite"), SI("Molysite"), SI("P"), SI("Portlandite"), SI("Siderite"), SI("Wustite")
30 graph_sy -la("H+")
-end
-active true
SELECTED_OUTPUT 0
-file selected_output_1.sel
-reset true
-molalities Ca+2 HCO3- CO3-2 CO2
-equilibrium_phases CO2(g)
-saturation_indices Calcite Aragonite Fe(OH)3 Ferrite-Ca
Goethite Hematite Hydroxyapatite Magnetite
Monohydrocalcite Vaterite Anhydrite Ankerite
Bassanite C Ca CO2(g)
Fe Fe(OH)2 Fe2(SO4)3 FeO
Ferrite-Dicalcium FeSO4 Gypsum Hydrophilite
Lawrencite Lime Melanterite Molysite
P Portlandite Siderite Wustite
-gases CO2(g)
-active true
-user_punch true
END
SOLUTION 1-10 Slag porewaters equilibrium with slag minerals
temp 25
pH 8.5
pe 4
redox pe
units ppm
density 1
Alkalinity 270
Ca 180
Cl 120 charge
Fe 0.3
N(-3) 0.5
P 0.3
S(6) 80
-water 1 # kg
REACTION_TEMPERATURE 1-10
25.0 40.0 in 4 steps
EQUILIBRIUM_PHASES 1-10 Temperature dependence of solubility of Brucite, Calcite, Larnite and Portlandite-Calculated in molar-calc tab (SS-Antimagnetic)
Brucite 0 2.31
Calcite 0 4.63
Larnite 0 4.83
Portlandite 0 7.04
USER_GRAPH 1
-headings Temperature Brucite Calcite Larnite Portlandite
-axis_titles "Temperature, in degrees celsius" "Saturation index" "pH"
-chart_title "Brucite-Calcite-Larnite-Portlandite Stability"
-axis_scale x_axis 25 40 4 4
-initial_solutions false
-connect_simulations true
-plot_concentration_vs x
-start
10 graph_x TC
20 graph_y SI("Brucite") SI("Calcite") SI("Larnite") SI("Portlandite")
30 graph_sy -la("H+")
-end
-active true
SELECTED_OUTPUT 1-10
-file 22815_1447_Erdinc-Cosgun_Equilibrium-transport_SS-Antimagnetic27112022.tsv
-reset true
-molalities CO3-2 CO2 HCO3- Ca+2
-equilibrium_phases Brucite Calcite Portlandite Larnite
-saturation_indices Calcite Brucite Larnite Portlandite
-gases CO2(g)
-active true
-user_punch true
END
USER_PUNCH
10 PUNCH description
PRINT
species false
END
Kinetics:
TITLE Kardemir Slag consisting of given proportions of Portlandite(Ca(OH)2), Calcite(CaCO3), Brucite(Mg(OH)2) and Calcio-olivine-Larnite-Dicalcium Silicate( Ca2SiO4)
TITLE Set up water to be introduced into porous slag sample
TITLE Slag SOLUTION Use of Kardemir water25062022
SOLUTION 0 Water injected into slag pores with atmospheric CO2
temp 25
pH 8.5
pe 4
redox pe
units ppm
density 1
Alkalinity 270
Ca 180
Cl 120 charge
Fe 0.3
N(-3) 0.5
P 0.3
S(6) 80
-water 1 # kg
EQUILIBRIUM_PHASES 0
CO2(g) -3.378 10
SOLUTION 1-10 Slag porewaters equilibrium with slag minerals
temp 25
pH 8.5
pe 4
redox pe
units ppm
density 1
Alkalinity 270
Ca 180
Cl 120 charge
Fe 0.3
N(-3) 0.5
P 0.3
S(6) 80
-water 1 # kg
EQUILIBRIUM_PHASES 1-10 Calculated in molar-calc tab (SS-Antimagnetic)
Brucite 0 2.31 # mol/l, Brucite precipitation without kinetics
Calcite 0 4.63 # mol/l, Calcite precipitation without kinetics
Larnite 0 4.83 # mol/l, Larnite precipitation without kinetics
Portlandite 0 7.04 # mol/l, Portlandite precipitation without kinetics
RATES
# The rate equation for Larnite in carbfix is reproduced here for study purposes.
# Since the rate is embedded in the carbfix.dat it does not ordinary have to be reproduced.
Larnite #Ca2SiO4;M 172.237 g/mol
-start
1 name$ = "Larnite"
2 if (PARM(1) = 0) then goto 3 else goto 5
3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)
4 GOTO 1000
5 S = PARM(2)*TOT("water")
##------------------Kinetic calculation---------------------##
# parameters
1000 Aa =5.25e8# mol.m-2.s-1
1001 Ac =8.25e5# mol.m-2.s-1
1002 Ea =70400# J/mol
1003 Ec =60900# J/mol
1004 R = 8.314 #J.deg-1.mol-1
1006 Sig = 1
1007 na =0.44
1008 nc =0.22
#rate equations
2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S
2001 rplusc = Ac* (exp(-Ec/ (R * Tk)))*(act("H+")^nc)* S
2002 rplus = rplusa + rplusc
4000 rate = rplus * (1 - SR ("Larnite")^(1/Sig))
5000 moles = rate * time
6000 save moles
-end
KINETICS 1-10
#-------------------------Mineral---------------------------------
Larnite #
-formula Ca2SiO4 1
#----------------------------Mass---------------------------------
-m0 4.8 #moles Larnite per litre pore-water
#-------------------------Surface area----------------------------
# The mineral surface area is specified using 3 parameters.
# The first parameter specifies if the specific surface area is calculated per g of rock (0) or kg of water (1)
# The second parameter specifies the specific surface area of the mineral in m2/g
# The third parameters define how the surface area changes during dissolution and has three possible values:
# 0: The surface area is constant
# 1: The surface area changes linearly with the moles of the mineral present
# 2: The surface area changes according to the geometry of dissolving cubes
# 3: The surface area changes according to the geometry of dissolving spheres
# Here, parameter #1 is 1, so that parameter #2 is the surface area
# in m2 per kg of water. See readme file for details.
-parms 1 4.8 2# 0.662 m2_Larnite/L_pores - calcs from Erdinc's data and PSD
-tol 1e-08
#-------------------------Mineral---------------------------------
Brucite
-formula Mg(OH)2 1
#----------------------------Mass---------------------------------
-m0 2.3 #moles Brucite per litre pore-water
#-------------------------Surface area----------------------------
-parms 1 2.3 2# 0.147 m2_Brucite/L_pores - calcs from Erdinc's data and PSD
-tol 1e-08
#-------------------------Mineral---------------------------------
Calcite
-formula CaCO3 1
#----------------------------Mass---------------------------------
-m0 4.6 #moles Calcite per litre pore-water
#-------------------------Surface area----------------------------
-parms 1 4.6 2# 0.446 m2_Calcite/L_pores - calcs from Erdinc's data and PSD
-tol 1e-08
#-------------------------Mineral---------------------------------
Portlandite
-formula Ca(OH)2 1
#----------------------------Mass---------------------------------
-m0 7.0 #moles Calcite per litre pore-water
#-------------------------Surface area----------------------------
-parms 1 7.0 2# 0.610 m2_Calcite/L_pores - calcs from Erdinc's data and PSD
-tol 1e-08
#-----------------------------------------------------------------
# -steps 1296000 in 50 steps #15 days
-step_divide 1
-runge_kutta 3
-bad_step_max 500
REACTION 1 We can add CO2 gas to the system (>atmospheric value)
CO2(g) 1 # Add/inject 2 moles CO2 to system
2 moles in 50 steps
REACTION 2 We expect evaporation of water from the system.
H2O -1 # Evaporate 52.731 moles (= 0.95 * 55.506)
52.731
RATES
Larnite
# from carbix database,7616-7639
-start
1 name$ = "Larnite"
2 if (PARM(1) = 0) then goto 3 else goto 5
3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)
4 GOTO 1000
5 S = PARM(2)*TOT("water")
1000 Aa =5.25e8 # mol.m-2.s-1
1001 Ac =8.25e5 # mol.m-2.s-1
1003 Ea =70400 # J/mol
1004 Ec =60900 # J/mol
1006 R = 8.314 #J.deg-1.mol-1
1007 Sig = 1
1008 na =0.44
1009 nc =0.22
2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S
2002 rplusc = Ac* (exp(-Ec/ (R * Tk)))*(act("H+")^nc)* S
2009 rplus = rplusa + rplusc
3000 rate = rplus * (1 - SR ("Larnite")^(1/Sig))
4000 moles = rate * time
5000 save moles
-end
Brucite
# from Palandri and Kharaka 2004
# Zhang et al. (2019) Computer & Geoscience, library of RATES blocks for PHREEQC in BASIC scripts
# experimental condition range T=25-75C, pH=1-5
-start
1 name$ = "Brucite"
2 if (PARM(1) = 0) then goto 3 else goto 5
3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)
4 GOTO 1000
5 S = PARM(2)*TOT("water")
1000 Aa =4.00e5
1001 Ab =1.30E-01
1002 Ac =0
1003 Ea =59000
1004 Eb =42000
1005 Ec =0
1006 R = 8.314
1007 Sig = 1
1008 na =0.500
1009 nc =0
2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S #acid rate expression
2002 rplusb = Ab* (exp(-Eb/ (R * Tk))) #neutral rate expression
2003 rplusc = Ac* (exp(-Ec/ (R * Tk)))*(act("H+")^nc)* S #base rate expression
2009 rplus = rplusa + rplusb + rplusc
3000 rate = rplus * (1 - SR ("Brucite")^(1/Sig))
4000 moles = rate * time
5000 save moles
-end
Calcite
# from Marty et al 2015
# pre-exponent coefficient A is calculated from logk using equation A=k/exp(-Ea/RT)
# Zhang et al. (2019) Computer & Geoscience, library of RATES blocks for PHREEQC in BASIC scripts
# experimental condition range T=10-100C, pH not specified
-start
1 name$ = "Calcite"
2 if (PARM(1) = 0) then goto 3 else goto 5
3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)
4 GOTO 1000
5 S = PARM(2)*TOT("water")
1000 Aa =0
1001 Ab =6.59E+04
1002 Ac =1.04E+09
1003 Ea =0
1004 Eb =66000
1005 Ec =67000
1006 R = 8.314
1007 Sig = 1
1008 na =0
1009 nc =1.6
2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S #acid rate expression
2002 rplusb = Ab* (exp(-Eb/ (R * Tk))) #neutral rate expression
2003 rplusc = Ac* (exp(-Ec/ (R * Tk)))*(act("HCO3-")^nc)* S #base rate expression
2009 rplus = rplusa + rplusb + rplusc
3000 rate = rplus * (1 - SR ("Calcite")^(1/Sig))
4000 moles = rate * time
5000 save moles
-end
Portlandite
# from Marty et al 2015
# pre-exponent coefficient A is calculated from logk using equation A=k/exp(-Ea/RT)
# Zhang et al. (2019) Computer & Geoscience, library of RATES blocks for PHREEQC in BASIC scripts
# experimental condition range T=25-80C, pH=5-7
-start
1 name$ = "Portlandite"
2 if (PARM(1) = 0) then goto 3 else goto 5
3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2)
4 GOTO 1000
5 S = PARM(2)*TOT("water")
1000 Aa =1.10E+10
1001 Ab =3.04E+05
1002 Ac =0
1003 Ea =75000
1004 Eb =75000
1005 Ec =0
1006 R = 8.314
1007 Sig = 1
1008 na =0.600
1009 nc =0
2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S #acid rate expression
2002 rplusb = Ab* (exp(-Eb/ (R * Tk))) #neutral rate expression
2003 rplusc = Ac* (exp(-Ec/ (R * Tk)))*(act("OH-")^nc)* S #base rate expression
2009 rplus = rplusa + rplusb + rplusc
3000 rate = rplus * (1 - SR ("Portlandite")^(1/Sig))
4000 moles = rate * time
5000 save moles
-end
KINETICS 1
Larnite # rate name
-formula Ca2SiO4 1
-m 4.8 # moles of Larnite
-m0 4.8 # initial moles of Larnite
-parms 1 0.662 2 # parameters for rate eqn. here (Larnite SA 0.662m2/L)
-tol 1e-08 # integration tolerance, default 1e-8 mol
Brucite # rate name
-formula Mg(OH)2 1
-m 2.3 # moles of Brucite
-m0 2.3 # initial moles of Brucite
-parms 1 0.147 2 # parameters for rate eqn. here (Brucite SA 0.147m2/L)
-tol 1e-08 # integration tolerance, default 1e-8 mol
Calcite # rate name
-formula CaCO3 1
-m 4.6 # moles of Calcite
-m0 4.6 # initial moles of Calcite
-parms 1 0.446 2 # parameters for rate eqn. here (Calcite SA 0.446m2/L)
-tol 1e-08 # integration tolerance, default 1e-8 mol
Portlandite # rate name
-formula Ca(OH)2 1
-m 7 # moles of Portlandite
-m0 7 # initial moles of Portlandite
-parms 1 0.61 2 # parameters for rate eqn. here (Portlandite SA 0.0610m2/L)
-tol 1e-08 # integration tolerance, default 1e-8 mol
-steps 86400 172800 259200 345600 432000 518400 604800 691200 777600 864000 86400 172800 259200 345600 432000 518400 604800 691200 777600 864000 86400 172800 259200 345600 432000 518400 604800 691200 777600 864000 86400 172800 259200 345600 432000 518400 604800 691200 777600 864000 #(864000 seconds = 10 days)
-step_divide 100
-runge_kutta 3
-bad_step_max 500
-cvode true
-cvode_steps 100
-cvode_order 5
TRANSPORT
-cells 10 # The slag heap is 10 metres high and is constantly irrigated with a solution in equilibrium with carbon dioxide in the atmosphere.
-shifts 30 # 30 shifts means three pore volume
-time_step 54889412 # time in seconds per shift [1.16E-07 m/s]
-lengths 10*1.1 # length per cell in m
-dispersivities 10*0.01 # dispersivity in m
-correct_disp true
-print_cells 1
SELECTED_OUTPUT 1
-file ErdincCosgun-Equilibrium-transport-Kardemir-simpleslagSSAntiTrans.tsv
-molalities CO3-2 CO2 HCO3-
-equilibrium_phases Brucite Calcite Larnite Portlandite # how much Brucite, Calcite, Larnite and Portlandite precipitates?
-saturation_indices Calcite Brucite Larnite Portlandite
-gases CO2(g)
-kinetic_reactants Brucite Calcite Larnite Portlandite # how much Brucite, Calcite, Larnite and Portlandite dissolves?
USER_GRAPH 1
-headings xxxx pH Brucite Calcite Larnite Portlandite
-axis_titles "time (in days)" "pH" "Moles of consumed equilibrium phases"
-chart_title "SimpleSlag Transport down 10m column. Cell 0-10m"
-initial_solutions true
-connect_simulations true
-plot_concentration_vs t
-start
5 REM IF CELL_NO <> 1 THEN GOTO 100 ELSE
10 GRAPH_X (TOTAL_TIME/864000)
20 GRAPH_Y -LA("H+")
30 GRAPH_SY EQUI_DELTA("Brucite"), EQUI_DELTA("Calcite"), EQUI_DELTA("Larnite"), EQUI_DELTA("Portlandite")
100 REM
-end
-active true
USER_GRAPH 2
-headings xxxx pH Brucite Calcite Larnite Portlandite
-axis_titles "time (in days)" "pH" "Moles of equilibrium phases"
-chart_title "SimpleSlag Transport down 10m column. Cell 0-10m"
-initial_solutions true
-connect_simulations true
-plot_concentration_vs t
-start
5 REM IF CELL_NO <> 1 THEN GOTO 100 ELSE
10 GRAPH_X (TOTAL_TIME/864000)
20 GRAPH_Y -LA("H+")
30 GRAPH_SY EQUI("Brucite"), EQUI_DELTA("Calcite"), EQUI_DELTA("Larnite"), EQUI_DELTA("Portlandite")
100 REM
-end
-active true
USER_GRAPH 3
-headings Reaction Calcite pH Larnite pH Brucite pH Portlandite pH
-chart_title "MgO Dissolution"
-axis_titles "Time (s)" "Saturation Index " "pH"
-initial_solutions true
-start
10 graph_x SIM_TIME
20 graph_y SI("Calcite") SI("Larnite") SI("Portlandite")SI("Brucite")
30 graph_sy -LA("H+")
-end
USER_GRAPH 4
-headings Time Calcite Larnite Brucite Portlandite
-axis_titles "Log10 Time" "Kin" ""
-initial_solutions false
-connect_simulations true
-plot_concentration_vs x
-start
10 GRAPH_X log10(total_time)
20 GRAPH_Y kin("Larnite"), kin("Portlandite"), kin("Calcite"), kin("Brucite")
-end
-active true
END
Logged
dlparkhurst
Global Moderator
Posts: 3949
Re: CO2 precipitation and mineralization of Steel Slag
«
Reply #1 on:
07/04/23 14:06 »
Is there a question that you have? I try not to get in the situation where I say you are doing something correctly, because I do not have the same understanding of your system that you do.
If you do have a question, please try to simplify the calculation as much as possible.
Logged
Erdinc
Frequent Contributor
Posts: 17
Re: CO2 precipitation and mineralization of Steel Slag
«
Reply #2 on:
10/04/23 11:59 »
Hello David,
Thanks for responding. My questions are:
1. Is the Equilibrium and Kinetics models I have, look correct?
2. After equilibrating the atmospheric CO2 If I want to Add/pump CO2 to the system (specifically from DAC) can this be done by keyword GAS_PHASE? if yes below model is correct?
3. How can I please show how much CO2 can be precipitated, dissolved/soluble, and trapped in a specific mineral? and (Graph format)
4. How can I demonstrate CO2 solubility and pH evolution against time? and (Graph Format)
5. How can I demonstrate Mineral evolution against time? and (Graph Format)
6. How can I demonstrate the Concentration of changes on the given/specific minerals and their reaction on CO2 capture? and (Graph Format)
Best Regards,
Erdinc
Logged
dlparkhurst
Global Moderator
Posts: 3949
Re: CO2 precipitation and mineralization of Steel Slag
«
Reply #3 on:
10/04/23 18:47 »
1. Is the Equilibrium and Kinetics models I have, look correct?
I try not to get in the situation where I say you are doing something correctly, because I do not have the same understanding of your system that you do.
I suggest you put END statements after every definition (SOLUTION, EQUILIBRIUM_PHASES, KINETICS, etc) and use USE (and SAVE) statements to explicitly define the reactions you want to occur.
2. After equilibrating the atmospheric CO2 If I want to Add/pump CO2 to the system (specifically from DAC) can this be done by keyword GAS_PHASE? if yes below model is correct?
You have too many moving parts with CO2 addition, evaporation, and kinetics. To model all of these, you need to know the rate of CO2 addition and evaporation, in addition to the rates of the other reactions.
3. How can I please show how much CO2 can be precipitated, dissolved/soluble, and trapped in a specific mineral? and (Graph format)
Sounds like you want the stoichiometry of carbon in the mineral times the mole transfer of the mineral.
4. How can I demonstrate CO2 solubility and pH evolution against time? and (Graph Format)
Not sure what you mean by CO2 solubility when you are adding CO2 as a REACTION. All the CO2 you specify will go into minerals and solution.
Note that REACTION 1 will add CO2 to cell 1 in the TRANSPORT calculation, and REACTION 2 will remove water from cell 2 in TRANSPORT.
If you use EQUILIBRIUM_PHASES with CO2(g) and specify say atmospheric CO2 partial pressure, you will find the amount of CO2 that will dissolve to produce the specified partial pressure.
Plot -LA("H+") vs TOTAL_TIME.
5. How can I demonstrate Mineral evolution against time? and (Graph Format)
EQUI("xxx") and EQUI_DELTA("xxx") show the amount of a mineral and its mole transfer for a given step. KIN("xxx") and KIN_DELTA("xxx") give the amount of kinetic reactant present and its mole transfer over the last reaction step.
6. How can I demonstrate the Concentration of changes on the given/specific minerals and their reaction on CO2 capture? and (Graph Format)
EQUI("xxx") and EQUI_DELTA("xxx") show the amount of a mineral and its mole transfer for a given step. KIN("xxx") and KIN_DELTA("xxx") give the amount of kinetic reactant present and its mole transfer over the last reaction step.
«
Last Edit: 10/04/23 18:54 by dlparkhurst
»
Logged
Print
Pages: [
1
]
Go Up
« previous
next »
PhreeqcUsers Discussion Forum
»
The PhreeqcUsers Forum
»
Introduce yourself (don't post questions here)
»
CO2 precipitation and mineralization of Steel Slag