DATABASE D:\USGS\Phreeqc Interactive 3.4.0-12927\database\wateq4f.datSOLUTION_MASTER_SPECIES Am Am+3 0.0 Am 243.0000 Am(+3) Am+3 0.0 Am SOLUTION_SPECIES Am+3 = Am+3 log_k 0.0 Am+3 + H2O - H+ = AmOH+2 log_k -7.200 Am+3 + 2H2O - 2H+ = Am(OH)2+ log_k -15.100 Am+3 + 3H2O - 3H+ = Am(OH)3 log_k -26.200 Am+3 + F- = AmF+2 log_k 3.400 delta_h 2.89 kcal Am+3 + 2F- = AmF2+ log_k 5.800 delta_h 10.77 kcal Am+3 + Cl- = AmCl+2 log_k 0.240 Am+3 + 2Cl- = AmCl2+ log_k -0.810 delta_h 13.11 kcal Am+3 + SO4-2 = AmSO4+ log_k 3.500 delta_h 9.56 kcal Am+3 + 2SO4-2 = Am(SO4)2- log_k 5.000 delta_h 16.72 kcal Am+3 + NO3- = AmNO3+2 log_k 1.28 delta_h 0.43 kcal Am+3 + 2NO3- = Am(NO3)2+ log_k 0.88 delta_h 2.58 kcal Am+3 + CO3-2 = AmCO3+ log_k 8.000 Am+3 + 2CO3-2 = Am(CO3)2- log_k 12.900 Am+3 + 3CO3-2 = Am(CO3)3-3 log_k 15.000 Am+3 + HCO3- = AmHCO3+2 log_k 3.100 Am+3 + H3SiO4- = AmSiO(OH)3+2 log_k 8.13 delta_h 4.44 kcalSURFACE_SPECIES Hfo_sOH + H+ = Hfo_sOH2+ log_k 7.18 Hfo_sOH = Hfo_sO- + H+ log_k -8.82 Hfo_wOH + H+ = Hfo_wOH2+ log_k 7.18 Hfo_wOH = Hfo_wO- + H+ log_k -8.82#Americium Hfo_sOH + Am+3 + 2H2O = Hfo_sOAm(OH)2 + 3H+ log_k -12.5 Hfo_wOH + Am+3 + 2H2O = Hfo_wOAm(OH)2 + 3H+ log_k -13.65 Hfo_sOH + Am+3 = Hfo_sOHAm+3 log_k 10.97 Hfo_wOH + Am+3 = Hfo_wOHAm+3 log_k 3.86 Hfo_sOH + Am+3 + NO3- = Hfo_sOHAmNO3+2 log_k 8.55 Hfo_wOH + Am+3 + NO3- = Hfo_wOHAmNO3+2 log_k 8.46 Hfo_sOH + Am+3 + Cl- = Hfo_sOHAmCl+2 log_k 8.92 Hfo_wOH + Am+3 + Cl- = Hfo_wOHAmCl+2 log_k 8.92#Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85 SOLUTION_SPECIES Na+ = Na+; -log_k 0; -gamma 1e10 0 Ca+2 = Ca+2; -log_k 0; -gamma 1e10 0 Cl- = Cl-; -log_k 0; -gamma 1e10 0 H2O + 0.01e- = H2O-0.01; -log_k -9SURFACE_MASTER_SPECIES /* define sorbed form of Hfo = Sfo */ Sfo_s Sfo_sOH; Sfo_w Sfo_wOHSURFACE_SPECIES Sfo_sOH = Sfo_sOH log_k 0.0 Sfo_sOH + H+ = Sfo_sOH2+ log_k 7.29 Sfo_sOH = Sfo_sO- + H+ log_k -8.93 Sfo_wOH = Sfo_wOH log_k 0.0 Sfo_wOH + H+ = Sfo_wOH2+ log_k 7.29 Sfo_wOH = Sfo_wO- + H+ log_k -8.93# Calcium Sfo_sOH + Ca+2 = Sfo_sOHCa+2 log_k 4.97 Sfo_wOH + Ca+2 = Sfo_wOCa+ + H+ log_k -5.85#Americium Sfo_sOH + Am+3 + 2H2O = Sfo_sOAm(OH)2 + 3H+ log_k -12.5 Sfo_wOH + Am+3 + 2H2O = Sfo_wOAm(OH)2 + 3H+ log_k -13.65 Sfo_sOH + Am+3 = Sfo_sOHAm+3 log_k 10.97 Sfo_wOH + Am+3 = Sfo_wOHAm+3 log_k 3.86SOLUTION 1-21 #Repository groundwater temp 25 pH 8.9 pe -3 redox pe units mol/L density 1.0 Na 3.23e-2 Ca 3.42e-4 K 1.16e-4 Mg 1.19e-4 Cl 1.79e-2 charge S(6) 1.15e-4 N(5) 3.67e-4 gfw 62.0 C(4) 2.31e-3 as HCO3 Si 7.05e-5EQUILIBRIUM_PHASES 1-21 CO2(g) -5.5 SURFACE 1-21 # define small conc's Hfo_w 97.5e-15 600 88e-13 Dw 1e-13 Hfo_s 2.5e-15 Sfo_w 97.5e-15 600 88e-13 Dw 0 Sfo_s 2.5e-15 -donnan 1e-10 -equil 1END SOLUTION 0 Palse solution with Am temp 25 pH 8.9 pe -3 units mol/L Ca 5.0e-2 Am 1e-7 SURFACE 0 Hfo_w 97.5e-5 600 88e-3 Dw 1e-13 Hfo_s 2.5e-5 -donnan 1e-10 #d 1 l 0.99 v 1# 1e-9 -equil 0ENDPRINT; -reset false; -status falseRATESSorb_hfo -start 10 if tot("Ca") > 1e-10 then sar = tot("Na") * 10^1.5 / tot("Ca")^0.5 else sar = 1 20 if sar < 11 then rate = -40 * tot("Hfo_w") else rate = 400 * tot("Sfo_w") 30 save rate * time 40 put(sar, 99) -endKINETICS 1-21 Sorb_Hfo; -formula Hfo_w 0.975 Hfo_s 0.025 Sfo_w -0.975 Sfo_s -0.025SELECTED_OUTPUT -file Colloid_Am-transport.sel -reset false -solution -distance true -time true -step true -pH true -totals Am -molalities AmSiO(OH)3+2 AmOH+2 Am(OH)2+ AmCO3+ Am(CO3)2- Am(CO3)3-3 Sfo_sOAm(OH)2 Sfo_wOAm(OH)2 Sfo_sOHAm+3 Sfo_wOHAm+3 Hfo_sOAm(OH)2 Hfo_wOAm(OH)2 Hfo_sOHAm+3 Hfo_wOHAm+3USER_GRAPH -head SAR Hfo Am_Hfo Am_tot -axis_titles "Pore Volumes" "mmol / L" "Sodium Adsorption Ratio (SAR)" -chart_title "Leaching Am with Ferrihydrite" -axis_scale x_axis 0 auto -axis_scale y_axis 0 auto -plot_concentration_vs X -start 10 PV = (step_no + 0.5) / 1 / cell_no 12 if sim_no > 4 then PV = PV + 1.0 20 Am_sol = 1e3 * tot("Am") 30 Am_col = 1e3 * (mol("Sfo_sOAm(OH)2") + mol("Sfo_wOAm(OH)2")+ mol("Sfo_sOHAm+3") + mol("Sfo_wOHAm+3")) 40 plot_xy PV, get(99), color = Green, symbol = None, y_axis = 2 50 plot_xy PV, (tot("Hfo_w") + tot("Hfo_s")) * 1e3, color = Orange, symbol = Circle, symbol_size = 10, line_width = 0 60 plot_xy PV, Am_col, color = Magenta, symbol = Circle, symbol_size = 6, line_width = 0 70 plot_xy PV, Am_sol + Am_col, color = Magenta, symbol = None -endTRANSPORT-cells 20-length 30 # total length = length * cells # total length is 600m-shifts 20 1 # total diffusion time is shifts*time_step-time 3.1536e+7 # second -dispersivity 0.078 -punch_cells 20-punch_frequency 1-20-print 20 -print_frequency 10 -flow_direction forward # diffusion-boundary_cond flux flux-correct_disp true-diffc 2.0e-13 #diffusion coefficient-multi_d true 1e-9 5.8e-3 0 1-porosities 20*5.8e-3ENDPRINT; -user_graph falseSURFACE 0SOLUTION 0 Palse solution with Am temp 25 pH 8.9 pe -3 redox pe units mol/L density 1.0 Na 3.23e-2 Ca 3.42e-4 K 1.16e-4 Mg 1.19e-4 Cl 1.79e-2 S(6) 1.15e-4 N(5) 3.67e-4 gfw 62.0 C(4) 2.31e-3 as HCO3 Si 7.05e-5EQUILIBRIUM_PHASES 0 CO2(g) -5.5 ENDPRINT; -user_graph trueTRANSPORT -shifts 50 1END
#DATABASE D:\USGS\Phreeqc Interactive 3.4.0-12927\database\wateq4f.datSOLUTION_SPECIES Na+ = Na+; -log_k 0; -gamma 1e10 0 Ca+2 = Ca+2; -log_k 0; -gamma 1e10 0 Cl- = Cl-; -log_k 0; -gamma 1e10 0 H2O + 0.01e- = H2O-0.01; -log_k -9SOLUTION_MASTER_SPECIES Am Am+3 0.0 Am 243.0000 Am(+3) Am+3 0.0 Am SOLUTION_SPECIES Am+3 = Am+3 log_k 0.0 Am+3 + H2O - H+ = AmOH+2 log_k -7.200 Am+3 + 2H2O - 2H+ = Am(OH)2+ log_k -15.100 Am+3 + 3H2O - 3H+ = Am(OH)3 log_k -26.200 Am+3 + F- = AmF+2 log_k 3.400 delta_h 2.89 kcal Am+3 + 2F- = AmF2+ log_k 5.800 delta_h 10.77 kcal Am+3 + Cl- = AmCl+2 log_k 0.240 Am+3 + 2Cl- = AmCl2+ log_k -0.810 delta_h 13.11 kcal Am+3 + SO4-2 = AmSO4+ log_k 3.500 delta_h 9.56 kcal Am+3 + 2SO4-2 = Am(SO4)2- log_k 5.000 delta_h 16.72 kcal Am+3 + NO3- = AmNO3+2 log_k 1.28 delta_h 0.43 kcal Am+3 + 2NO3- = Am(NO3)2+ log_k 0.88 delta_h 2.58 kcal Am+3 + CO3-2 = AmCO3+ log_k 8.000 Am+3 + 2CO3-2 = Am(CO3)2- log_k 12.900 Am+3 + 3CO3-2 = Am(CO3)3-3 log_k 15.000 Am+3 + HCO3- = AmHCO3+2 log_k 3.100 Am+3 + H3SiO4- = AmSiO(OH)3+2 log_k 8.13 delta_h 4.44 kcalENDSURFACE_SPECIES Hfo_sOH + H+ = Hfo_sOH2+ log_k 7.18 Hfo_sOH = Hfo_sO- + H+ log_k -8.82 Hfo_wOH + H+ = Hfo_wOH2+ log_k 7.18 Hfo_wOH = Hfo_wO- + H+ log_k -8.82#Americium Hfo_sOH + Am+3 + 2H2O = Hfo_sOAm(OH)2 + 3H+ log_k -12.5 Hfo_wOH + Am+3 + 2H2O = Hfo_wOAm(OH)2 + 3H+ log_k -13.65 Hfo_sOH + Am+3 = Hfo_sOHAm+3 log_k 10.97 Hfo_wOH + Am+3 = Hfo_wOHAm+3 log_k 3.86 Hfo_sOH + Am+3 + NO3- = Hfo_sOHAmNO3+2 log_k 8.55 Hfo_wOH + Am+3 + NO3- = Hfo_wOHAmNO3+2 log_k 8.46 Hfo_sOH + Am+3 + Cl- = Hfo_sOHAmCl+2 log_k 8.92 Hfo_wOH + Am+3 + Cl- = Hfo_wOHAmCl+2 log_k 8.92#Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85ENDSURFACE_MASTER_SPECIES /* define sorbed form of Hfo = Sfo */ Sfo_s Sfo_sOH; Sfo_w Sfo_wOHSURFACE_SPECIES Sfo_sOH = Sfo_sOH log_k 0.0 Sfo_sOH + H+ = Sfo_sOH2+ log_k 7.29 Sfo_sOH = Sfo_sO- + H+ log_k -8.93 Sfo_wOH = Sfo_wOH log_k 0.0 Sfo_wOH + H+ = Sfo_wOH2+ log_k 7.29 Sfo_wOH = Sfo_wO- + H+ log_k -8.93# Calcium Sfo_sOH + Ca+2 = Sfo_sOHCa+2 log_k 4.97 Sfo_wOH + Ca+2 = Sfo_wOCa+ + H+ log_k -5.85#Americium Sfo_sOH + Am+3 + 2H2O = Sfo_sOAm(OH)2 + 3H+ log_k -12.5 Sfo_wOH + Am+3 + 2H2O = Sfo_wOAm(OH)2 + 3H+ log_k -13.65 Sfo_sOH + Am+3 = Sfo_sOHAm+3 log_k 10.97 Sfo_wOH + Am+3 = Sfo_wOHAm+3 log_k 3.86ENDSOLUTION 1-21 #Repository groundwater temp 25 pH 8.9 pe -3 redox pe units mol/L density 1.0 Na 3.23e-2 Ca 3.42e-4 K 1.16e-4 Mg 1.19e-4 Cl 1.79e-2 charge S(6) 1.15e-4 N(5) 3.67e-4 gfw 62.0 C(4) 2.31e-3 as HCO3 Si 7.05e-5ENDSURFACE 1-21 # define small conc's Hfo_w 97.5e-15 600 88e-13 Dw 1e-13 Hfo_s 2.5e-15 Sfo_w 97.5e-15 600 88e-13 Dw 0 Sfo_s 2.5e-15 -donnan 1e-10 -equil 1END EQUILIBRIUM_PHASES 1-21 CO2(g) -5.5 END SOLUTION 0 Palse solution with Am temp 25 pH 8.9 pe -3 units mol/L Ca 5.0e-2 Am 1e-7ENDSURFACE 0 Hfo_w 97.5e-5 600 88e-3 Dw 1e-13 Hfo_s 2.5e-5 -donnan 1e-10 #d 1 l 0.99 v 1# 1e-9 -equil 0END#PRINT; -reset false; -status falseRATESSorb_hfo -start 10 if tot("Ca") > 1e-10 then sar = tot("Na") * 10^1.5 / tot("Ca")^0.5 else sar = 1 12 k1 = -40e0 14 k2 = 400e0 20 if sar < 11 then rate = k1 * tot("Hfo_w") else rate = k2 * tot("Sfo_w") 22 fSw = tot("Sfo_w") / (1e-18 + tot("Sfo_w")) 24 fSs = tot("Sfo_s") / (1e-18 + tot("Sfo_s")) 26 fHw = tot("Hfo_w") / (1e-10 + tot("Hfo_w")) 28 fHs = tot("Hfo_s") / (1e-10 + tot("Hfo_s")) 30 moles = rate * time 32 if (moles < 0) then moles = moles * fHw * fHs 34 if (moles > 0) then moles = moles * fSw * fSs 36 SAVE moles 40 put(sar, 99) -endKINETICS 1-21 Sorb_Hfo; -formula Hfo_w 0.975 Hfo_s 0.025 Sfo_w -0.975 Sfo_s -0.025#-cvodeENDTRANSPORT -cells 5 -shifts 5 -time_step 31536000 1 # seconds -lengths 30 -dispersivities 5*0.078 -correct_disp true -diffusion_coefficient 2e-13 -print_cells 1-5 -print_frequency 1 -punch_cells 1-5 -punch_frequency 5 -multi_d true 1e-09 0.0058 0 1USER_GRAPH 1 -headings dist Am_col Am_dis Am_sediment -axis_titles "Distance, m" "mmol / L" "Sodium Adsorption Ratio (SAR)" -chart_title "One pore volume, 5 years" -initial_solutions false -connect_simulations false -plot_concentration_vs x -start 20 Am_sol = 1e3 * tot("Am") 30 Am_col = 1e3 * SURF("Am", "Hfo") 40 GRAPH_X DIST 60 GRAPH_Y Am_col, Am_sol 70 GRAPH_Y SURF("Am", "Sfo") * 1e3-end -active trueENDUSER_GRAPH 1-detachENDSURFACE 0SOLUTION 0 Palse solution with Am temp 25 pH 8.9 pe -3 redox pe units mol/L density 1.0 Na 3.23e-2 Ca 3.42e-4 K 1.16e-4 Mg 1.19e-4 Cl 1.79e-2 S(6) 1.15e-4 N(5) 3.67e-4 gfw 62.0 C(4) 2.31e-3 as HCO3 Si 7.05e-5EQUILIBRIUM_PHASES 0 CO2(g) -5.5ENDTRANSPORT -shifts 3 1 -punch_frequency 3USER_GRAPH 2 -headings Dist Am_col_5y Am_dis_5y Am_sediment_5y -axis_titles "Distance, m" "mmol / L" "Sodium Adsorption Ratio (SAR)" -chart_title "1.6 Pore volumes, 8 years" -initial_solutions false -connect_simulations false -plot_concentration_vs x -start 20 Am_sol = 1e3 * tot("Am") 30 Am_col = 1e3 * SURF("Am", "Hfo") 40 GRAPH_X DIST 60 GRAPH_Y Am_col, Am_sol 70 GRAPH_Y SURF("Am", "Sfo") * 1e3-end -active trueEND