#In llnlAlbite -start1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-12 REM PARM(1) = Specific area of Albite m^2/mol Albite3 REM PARM(2) = Adjusts lab rate to field rate4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)5 REM Albite parameters10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.320 RESTORE 1030 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH40 DATA 3500, 2000, 2500, 200050 RESTORE 4060 READ e_H, e_H2O, e_OH, e_CO270 pk_CO2 = 1380 n_CO2 = 0.6100 REM Generic rate follows110 dif_temp = 1/TK - 1/281120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")130 REM rate by H+140 pk_H = pk_H + e_H * dif_temp150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)160 REM rate by hydrolysis170 pk_H2O = pk_H2O + e_H2O * dif_temp180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)190 REM rate by OH-200 pk_OH = pk_OH + e_OH * dif_temp210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH220 REM rate by CO2230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2250 rate = rate_H + rate_H2O + rate_OH + rate_CO2260 area = PARM(1) * M0 *(M/M0)^0.67270 rate = PARM(2) * area * rate * (1-SR("Albite"))280 moles = rate * TIME290 SAVE moles -end#In my literatureAlbite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_alb = SI("Albite") 30 if (M <= 0 and si_alb < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_alb > 0) then SA = 1e-05 #nucleation #60 k_acid = 10^(-10.16)*EXP(-65.00e+03/8.314*(1.0/TK-1.0/298.15))*(ACT("H+")^(0.457)) 70 k_neut = 10^(-12.56)*EXP(-69.80e+00/8.314*(1.0/TK-1.0/298.15)) #80 k_base = 10^(-15.60)*EXP(-71.00e+03/8.314*(1.0/TK-1.0/298.15))*(ACT("OH-")^(-0.572)) 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_alb)) 190 moles = r * TIME 200 SAVE moles -end