PRINT-alkalinity trueSOLUTION 1 temp 250 pH 7.41 pe 2 O2(g) 0 redox pe units mmol/l density 1.1 calc Al 0.02 #Alkalinity 0.6 meq/L Ca 3.69 Fe 0.21 K 6.82 Mg 0.64 Na 934.78 Si 3.05 #-water 20 # kg
RATESQuartz -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_qtz = SI("Quartz") 30 if (M <= 0 and si_qtz < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_qtz > 0) then SA = 1e-05 #nucleation 60 k_acid = 0 70 k_neut = 10^(-13.40)*EXP(-90.90e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_qtz)) 190 moles = r * TIME 200 SAVE moles -endAnorthite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_anort = SI("Anorthite") 30 if (M <= 0 and si_anort < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_anort > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-3.5)*EXP(-16.60e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(1.411) 70 k_neut = 10^(-9.82)*EXP(-31.50e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_anort)) 190 moles = r * TIME 200 SAVE moles -endAlbite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_alb = SI("Albite") 30 if (M <= 0 and si_alb < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_alb > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-10.16)*EXP(-65.00e+03/8.314*(1.0/TK-1.0/298.15))*(ACT("H+")^(0.457)) 70 k_neut = 10^(-12.56)*EXP(-69.80e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 10^(-15.60)*EXP(-71.00e+03/8.314*(1.0/TK-1.0/298.15))*(ACT("OH-")^(-0.572)) 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_alb)) 190 moles = r * TIME 200 SAVE moles -endK-Feldspar -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_kfeld = SI("K-Feldspar") 30 if (M <= 0 and si_kfeld < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_kfeld > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-10.06)*EXP(-51.70e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.500) 70 k_neut = 10^(-12.41)*EXP(-38.00e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 10^(-21.20)*EXP(-94.10e+03/8.314*(1.0/TK-1.0/298.15))*ACT("OH-")^(-0.823) 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_kfeld)) 190 moles = r * TIME 200 SAVE moles -endDiopside -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_diopsi = SI("Diopside") 30 if (M <= 0 and si_diopsi < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_diopsi > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-6.36)*EXP(-96.10e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.710) 70 k_neut = 10^(-11.11)*EXP(-40.60e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_diopsi)) 190 moles = r * TIME 200 SAVE moles -endEnstatite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_enst = SI("Enstatite") 30 if (M <= 0 and si_enst < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_enst > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-9.02)*EXP(-80.00e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.600) 70 k_neut = 10^(-12.72)*EXP(-80.00e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_enst)) 190 moles = r * TIME 200 SAVE moles -endMagnetite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_magnet = SI("Magnetite") 30 if (M <= 0 and si_magnet < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_magnet > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-8.59)*EXP(-18.60e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.279) 70 k_neut = 10^(-10.78)*EXP(-18.60e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_magnet)) 190 moles = r * TIME 200 SAVE moles -endEpidote -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_epidt = SI("Epidote") 30 if (M <= 0 and si_epidt < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_epidt > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-10.60)*EXP(-71.10e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.338) 70 k_neut = 10^(-11.99)*EXP(-70.70e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 10^(-17.33)*EXP(-79.10e+03/8.314*(1.0/TK-1.0/298.15))*ACT("OH-")^(-0.556) 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_epidt)) 190 moles = r * TIME 200 SAVE moles -endCalcite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_calc = SI("Calcite") 30 if (M <= 0 and si_calc < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_calc > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-0.30)*EXP(-14.40e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(1.000) 70 k_neut = 10^(-5.81)*EXP(-23.50e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_carb = 10^(-3.48)*EXP(-35.40e+03/8.314*(1.0/TK-1.0/298.15))*PR_P("CO2(g)")^(1.000) 90 k_rateconst = k_acid + k_neut + k_carb 100 r = k_rateconst * SA * (1-(10^si_calc)) 190 moles = r * TIME 200 SAVE moles -endIllite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_ill = SI("Illite") 30 if (M <= 0 and si_ill < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_ill > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-10.12)*EXP(-58.00e+03/8.314*(1.0/TK-1.0/373.15))*ACT("H+")^(0.550) 70 k_neut = 10^(-12.26)*EXP(-54.00e+03/8.314*(1.0/TK-1.0/373.15)) 80 k_base = 10^(-10.60)*EXP(-77.00e+03/8.314*(1.0/TK-1.0/373.15))*ACT("OH-")^(-0.350) 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_ill)) 190 moles = r * TIME 200 SAVE moles -endChamosite-7A -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_cham = SI("Chamosite-7A") 30 if (M <= 0 and si_cham < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_cham > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-11.11)*EXP(-88.00e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.500) 70 k_neut = 10^(-12.52)*EXP(-88.00e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_cham)) 190 moles = r * TIME 200 SAVE moles -endDolomite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_dolo = SI("Dolomite") 30 if (M <= 0 and si_dolo < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_dolo > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-3.76)*EXP(-56.70e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.500) 70 k_neut = 10^(-8.60)*EXP(-95.30e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_carb = 10^(-5.37)*EXP(-45.70e+03/8.314*(1.0/TK-1.0/298.15))*PR_P("CO2(g)")^(0.500) 90 k_rateconst = k_acid + k_neut + k_carb 100 r = k_rateconst * SA * (1-(10^si_dolo)) 190 moles = r * TIME 200 SAVE moles -endAnhydrite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_anhyd = SI("Anhydrite") 30 if (M <= 0 and si_anhyd < 0) then goto 200 40 SA = PARM(1)*M 50 if (M = 0 and si_anhyd > 0) then SA = 1e-05 #nucleation 60 k_acid = 0 70 k_neut = 10^(-2.79)*EXP(-0.00e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_anhyd)) 190 moles = r * TIME 200 SAVE moles -endENDSOLUTION 1 temp 25 pH 7.41 pe 2 redox pe units mmol/l density 1.1 Al 0.02 Alkalinity 0.6 meq/l as HCO3- Ca 3.69 Fe 0.21 K 6.82 Mg 0.64 Na 934.78 Si 3.05 -water 20 # kgINCREMENTAL_REACTIONS trueREACTION_TEMPERATURE 1 25 #250 in 5 stepsKINETICS 1-steps 3024000 #in 100 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 500Quartz -formula SiO2 1 -m 0 -m0 0 -parms 0 #-tol 1e-12Anorthite -formula CaAl2(SiO4)2 1 -m 0 -m0 0 -parms 0 #-tol 1e-12Albite -formula NaAlSi3O8 1 -m 0 -m0 0 -parms 0 #-tol 1e-12K-Feldspar -formula KAlSi3O8 1 -m 0 -m0 0 -parms 0 #-tol 1e-12Diopside -formula CaMgSi2O6 1 -m 0 -m0 0 -parms 0 #-tol 1e-12Enstatite -formula MgSiO3 1 -m 0 -m0 0 -parms 0 #-tol 1e-12Magnetite -m 0 -m0 0 -parms 0 #-tol 1e-12Epidote -m 0 -m0 0 -parms 0 #-tol 1e-12Calcite -formula CaCO3 1 -m 0 -m0 0 -parms 0 #-tol 1e-12Illite -formula K0.6Mg0.25Al2.3Si3.5O10(OH)2 1 -m 0 -m0 0 -parms 0 #-tol 1e-12Chamosite-7A -m 0 -m0 0 -parms 0 #-tol 1e-12Dolomite -formula CaMg(CO3)2 1 -m 0 -m0 0 -parms 0 #-tol 1e-12Anhydrite -formula CaSO4 1 -m 0 -m0 0 -parms 0 #-tol 1e-12END