log K = LA(Ca+2) + LA(SO4-2) + 2*LA(H2O)
SOLUTION-units mol/kgwS(6) 0.1Ca 0.02EQUILIBRIUM_PHASESGypsum 0 0END
delta_gyp shifts delta*shifts equi(gyp) 0.0000e+00 5.1000e+01 0.0000e+00 0.0000e+00 0.0000e+00 5.0000e+01 0.0000e+00 0.0000e+00 0.0000e+00 4.9000e+01 0.0000e+00 0.0000e+00 0.0000e+00 4.8000e+01 0.0000e+00 0.0000e+00 0.0000e+00 4.7000e+01 0.0000e+00 0.0000e+00 2.4088e-04 4.6000e+01 1.1080e-02 1.1080e-02 3.3186e-03 4.5000e+01 1.4934e-01 1.4934e-01 3.2829e-03 4.4000e+01 1.4445e-01 1.4445e-01 3.2469e-03 4.3000e+01 1.3962e-01 1.3962e-01 3.2109e-03 4.2000e+01 1.3486e-01 1.3486e-01 3.1747e-03 4.1000e+01 1.3016e-01 1.3016e-01 3.1384e-03 4.0000e+01 1.2554e-01 1.2554e-01 Column sum: 8.3504e-01 8.3504e-01
SOLUTION 0 red_seatemp 24.5 #average of Al-Taani et al., 2014 and Longinelli and Craig, 1967..pH 8.22 charge #Nonepe 0.2679 #Al-Taani et al., 2014 // 4.00 is the default (?) // 4.00 is the default (?)units ppmMn 0.000306 #Al-Taani et al., 2014 for the Northern Gulf of AqabaFe 0.006281 #Al-Taani et al., 2014 for the Northern Gulf of AqabaB 1.344 #Al-Taani et al., 2014Cl 24756 #https://www.lenntech.com/composition-seawater.htm in the Red Sea, and Longinelli and Craig, 1967Na 16417.2 #https://www.lenntech.com/composition-seawater.htm in the Red Sea, and Longinelli and Craig, 1967 describes [Na]=15834S(6) 9500 #Longinelli and Craig, 1967 and Llyod, 1967Ca 774 #Abdel-Aal et al., 2015K 301 #Abdel-Aal et al., 2015Mg 1646 #Abdel-Aal et al., 2015Sr 8.3 #Bernat, Church, and Allegre, 1972 from the MediterraneanBa 0.011 #Bernat, Church, and Allegre, 1972 from the MediterraneanLi 0.228 #Stoffyn-Egli and Mackenzie, 1984 for the Mediterranean Sea-water 17.378153556381264ENDSOLUTION 1-12 Initial solution in the RO moduletemp 24.5units ppmMn 0Fe 0B 0Cl 0Na 0S(6) 0Ca 0K 0Mg 0Sr 0Ba 0Li 0-water 17.378153556381264ENDEQUILIBRIUM_PHASES 1-12 gypsum 0 0ENDREACTION 1 H2O -1; 9.057149147747937REACTION 2 H2O -1; 8.952016761697115REACTION 3 H2O -1; 8.846884375646292REACTION 4 H2O -1; 8.74175198959547REACTION 5 H2O -1; 8.636619603544647REACTION 6 H2O -1; 8.531487217493824REACTION 7 H2O -1; 8.426354831443REACTION 8 H2O -1; 8.321222445392177REACTION 9 H2O -1; 8.216090059341354REACTION 10 H2O -1; 8.110957673290532REACTION 11 H2O -1; 8.005825287239709REACTION 12 H2O -1; 7.9006929011888865ENDSELECTED_OUTPUT 2-file RedSea.selUSER_PUNCH 2-headings delta_gyp shifts delta*shifts equi(gyp)10 IF TOTAL_TIME <= 0 THEN GOTO 20020 d = EQUI_DELTA("gypsum")30 n = 52 - CELL_NO40 sum_gyp = d * n50 PUT(GET(1) + sum_gyp, 1)55 PUT(GET(2) + EQUI("gypsum"), 2)60 PUNCH d, n, sum_gyp, EQUI("gypsum")70 IF CELL_NO < 12 THEN GOTO 30080 PUNCH EOL$90 PUNCH "Column sum: ", GET(1), GET(2)110 GOTO 300200 PUNCH NO_NEWLINE$300 ENDTRANSPORT-cells 12-shifts 51-lengths 0.08466666666666667-time_step 3.946329703005324 # this satisfies the Courant condition with a feed velocity of 2.575E-1 m/s-initial_time 0-boundary_conditions constant flux # Dirichlet boundary condition-diff 0-disp 0-punch_cells 1-12-punch_frequency 51-print_frequency 51END
SOLUTION-units mol/kgwS(6) 0.1Ca 0.02REACTIONNaCl 11 in 20 stepsUSER_GRAPH 1 -headings rxn Mean_Gamma LA(H2O) SI(Gypsum) -axis_titles "NaCl added, moles" "Gamma, LA(H2O), or SI" -axis_scale x_axis auto 1 auto auto -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X RXN20 GRAPH_Y SQRT(GAMMA("Ca+2")*GAMMA("SO4-2")), LA("H2O")30 GRAPH_Y SI("Gypsum") -endEND
USER_PRINT10 PRINT "gamma_Ca: ", GAMMA("Ca+2")20 PRINT "gamma_SO4: ", GAMMA("SO4-2")