Reaction step 1.Using mix 3. Mixture 3. 9.000e-02 Solution 0 1.000e+00 Solution 3 -9.000e-02 Solution 100 -----------------------------Solution composition------------------------------ Elements Molality Moles Cl 1.090e-05 1.090e-05 Cs 3.350e-04 3.350e-04 K 1.090e-05 1.090e-05 Mg 8.176e-04 8.176e-04 S 8.176e-04 8.176e-04
Reaction step 1.Using mix 3. Mixture 3. 9.000e-02 Solution 0 1.000e+00 Solution 3 -9.000e-02 Solution 100 -----------------------------Solution composition------------------------------ Elements Molality Moles Cl 1.922e-04 9.494e-07 Cs 3.350e-04 1.655e-06 K 1.922e-04 9.494e-07 Mg 1.441e-02 7.121e-05 S 1.441e-02 7.121e-05
DATABASE C:\Users\International\Documents\PhD\AlexF\Modelo alex\Fitted\000_Database_PHREEQC\PKDLM_BRGM_database_phreeqc_ThermoddemV1.10_06Jun2017.dat SURFACE 10-equilibrate 10-sites_units density Illitex 2.07E-05 97 3695.29 # 0.5% Montx 3.80E-07 800 3695.29 # 1.1% Kaolinitex 1.46E-06 10 3695.29 # 0.7% # ^site/nm^2 ^SSA (m^2/g) ^M/V (g/L) EXCHANGE 10-equilibrate 10 Illi 6.37E-03 Mont 3.39E-02 Kao 7.19E-04 # Equilibrage spike SOLUTION 10 units mol/L pH 9.32Na 5.00E-03K 1.60E-03Ca 4.50E-03Mg 1.00E-03N(5) 1.60E-03Cl 5.00E-03S(6) 1.00E-03C(4) 4.50E-03EQUILIBRIUM_PHASES 10 Fix_H+ -9.32 HCl 10 save surface 3 save exchange 3 END #Contaminated soil ==> RIZO SOLUTION 3 # ==> stagnant cell units mol/L pH 9.32 Cl 1.00E-05 K 1.00E-05 Mg 7.50E-04 S(6) 7.50E-04 Cs 3.35E-04 use surface 3 #number of surface and exchange need to be the same as the cell here solution 3 ==> cell 3 use Exchange 3 EQUILIBRIUM_PHASES 3 Fix_H+ -9.32 HCl 10 END SOLUTION 0-1 # inlet solution 0 # define solution 1 since PHREEQC wants at least 1 cell in the colum for transport ==> mobile cell. units mol/L pH 9.32 Cl 1.00E-05 K 1.00E-05 Mg 7.50E-04 S(6) 7.50E-04Solution 100 #for evaporation ENDMIX 3 # simulate % water evaporation of solution 3 then replaced by solution 0 0 0.09100 -0.093 1 END SELECTED_OUTPUT -reset false -file C:\Users\International\Documents\PhD\AlexF\Modelo alex\Fitted\RHIZO\RHIZO_moy\RHIZOsol\Sol-S\2_Fit\test_MV\data_RHIZO_MV.sel-state TRUE-solution TRUE-water TRUE-step TRUE-time TRUE-high_precision TRUE-totals Cs K Na Ca Mg Illitex Montx Kaolinitex Illi Mont Kao-molalities IllitexOCs+0.5 IllitexOK+0.5 IllitexONa+0.5 IllitexOCa+1.5 IllitexOMg+1.5 IllitexO-0.5 IllitexOH+0.5 MontxOCs+0.5 MontxOK+0.5 MontxONa+0.5 MontxOCa+1.5 MontxOMg+1.5 MontxO-0.5 MontxOH+0.5 KaolinitexOCs+0.5 KaolinitexOK+0.5 KaolinitexONa+0.5 KaolinitexOCa+1.5 KaolinitexOMg+1.5 KaolinitexO-0.5 KaolinitexOH+0.5 CsIlli KIlli NaIlli CaIlli2 MgIlli2 CsMont KMont NaMont CaMont2 MgMont2 CsKao KKao NaKao CaKao2 USER_PUNCH -headings nb_cel T_exp log10(Csaq) log10(Kd) Cssurf Csexch Ksurf Kexch Nasurf Naexch Casurf Caexch Mgsurf Mgexch Csverif Csini Kini Naini Caini Mgini Csaq Kaq Naaq Caaq Mgaq -start 10 Msoil = 18.31/1000 # soil_masse(Kg) 20 Vwater = 4.94/1000 # volume batch (L) 30 MVw = Msoil/Vwater #Kg/L 40 VwM = Vwater/Msoil #L/Kg 50 Csini = sys("Cs") # (mol/L) 60 Caaq = tot("Ca") #(mol/L) 70 Csaq = tot("Cs") #(mol/L) 80 Kaq = tot("K") #(mol/L) 90 Naaq = tot("Na") #(mol/L) 100 Mgaq = tot("Mg") #(mol/L) 110 surfCs = (surf("Cs","Illitex")+ surf("Cs","Montx")+ surf("Cs","Kaolinitex")) #(mol/L) 120 exchCs = (mol("CsIlli")+ mol("CsMont")+ mol ("CsKao")) #(mol/L)130 surfK = (surf("K","Illitex")+ surf("K","Montx")+ surf("K","Kaolinitex")) #(mol/L) 140 exchK = (mol("KIlli")+ mol("KMont")+ mol ("KKao")) #(mol/L)150 surfNa = (surf("Na","Illitex")+ surf("Na","Montx")+ surf("Na","Kaolinitex")) #(mol/L) 160 exchNa = (mol("NaIlli")+ mol("NaKao")+ mol ("NaMont")) #(mol/L) 170 surfCa = (surf("Ca","Illitex")+ surf("Ca","Montx")+ surf("Ca","Kaolinitex")) #(mol/L) 180 exchCa = (mol("CaIlli2")+ mol("CaKao2")+ mol ("CaMont2")) #(mol/L)190 surfMg = (surf("Mg","Illitex")+ surf("Mg","Montx")+ surf("Mg","Kaolinitex")) #(mol/L) 200 exchMg = (mol("MgIlli2")+ mol("MgMont2")+ mol ("MgKao2")) #(mol/L)210 Kdsurf_Cs = (surfCs/Csaq)*VwM #(L/Kg) 220 Kdexch_Cs = (exchCs/Csaq)*VwM #(L/Kg) 230 Kdsurf_k = (surfK/Kaq)*VwM #(L/Kg) 240 Kdexch_k = (exchK/Kaq)*VwM #(L/Kg)250 Kdsurf_Na = (surfNa/Naaq)*VwM #(L/Kg) 260 Kdexch_Na = (exchNa/Naaq)*VwM #(L/Kg)270 Kdsurf_Ca = (surfCa/Caaq)*VwM #(L/Kg) 280 Kdexch_Ca = (exchCa/Caaq)*VwM #(L/Kg)290 Kdsurf_Mg = (surfMg/Mgaq)*VwM #(L/Kg) 300 Kdexch_Mg = (exchMg/Mgaq)*VwM #(L/Kg)310 Cssurf = Csaq*Kdsurf_Cs #(mol/Kg) 320 Csexch = Csaq*Kdexch_Cs #(mol/Kg)330 Ksurf = Kaq*Kdsurf_K #(mol/Kg) 340 Kexch = Kaq*Kdexch_K #(mol/Kg)350 Nasurf = Naaq*Kdsurf_Na #(mol/Kg) 360 Naexch = Naaq*Kdexch_Na #(mol/Kg)370 Casurf = Caaq*Kdsurf_Ca #(mol/Kg) 380 Caexch = Caaq*Kdexch_Ca #(mol/Kg)390 Mgsurf = Mgaq*Kdsurf_Mg #(mol/Kg) 400 Mgexch = Mgaq*Kdexch_Mg #(mol/Kg)410 FESCs = (surf("Cs","Illitex")) #(mol/L) 420 FESK = (surf("K","Illitex")) #(mol/L)430 EXILLICs = mol("CsIlli") #(mol/L)440 EXILLIK = mol("KIlli") #(mol/L) 450 Csfix = surfCs + exchCs #(mol/L) 460 Kd = (Csfix/Csaq)*VwM #(L/Kg) 470 Cssorb = Csaq*Kd #(mol/Kg)480 Illi_EX_CS = EXILLICs*VwM #(mol/Kg) 490 Illi_EX_K = EXILLIK*VwM #(mol/Kg)500 Cs_FES = FESCs*VwM #(mol/Kg) 510 K_FES = FESK*VwM #(mol/Kg)520 Csverif = Csaq + Cssorb*MVw #(mol/L) 530 dt= 3600 # s 540 T_R= 40821.11 # = cel renew time (s) 550 nb_cel= dt*(step_no)/ T_R #nb renewed cel 560 T_exp = dt*(step_no) #experiment time (s)570 Kini = sys("K") # (mol/L)580 Naini = sys("Na") # (mol/L)590 Caini = sys("Ca") # (mol/L)700 Mgini = sys("Mg") # (mol/L) 800 punch nb_cel T_exp log10(Csaq) log10(Kd) surfCs exchCs surfK exchK surfNa exchNa surfCa exchCa surfMg exchMg Csverif Csini Kini Naini Caini Mgini Csaq Kaq Naaq Caaq Mgaq -end TRANSPORT -cells 1 -lengths 0.01 # 1 cm sol -shifts 576 # number of time_steps total time is 24 days -time_step 3600 # each time_step (s) the MIX is performed -flow_direction diffusion_only -boundary_conditions constant closed -diffusion_coefficient 2.3E-08 -stagnant 1 -punch_cells 3 -punch_frequency 1 # sample every time step END
DATABASE C:\Users\International\Documents\PhD\AlexF\Modelo alex\Fitted\000_Database_PHREEQC\PKDLM_BRGM_database_phreeqc_ThermoddemV1.10_06Jun2017.dat SURFACE 10-equilibrate 10-sites_units density Illitex 2.07E-05 97 18.31 # 0.5% Montx 3.80E-07 800 18.31 # 1.1% Kaolinitex 1.46E-06 10 18.31 # 0.7% # ^site/nm^2 ^SSA (m^2/g) ^M (g) EXCHANGE 10-equilibrate 10 Illi 3.16E-05 Mont 1.68E-04 Kao 3.56E-06 # Equilibrage spike SOLUTION 10-water 4.94E-03 #kg units mol/L pH 9.32Na 5.00E-03K 1.60E-03Ca 4.50E-03Mg 1.00E-03N(5) 1.60E-03Cl 5.00E-03S(6) 1.00E-03C(4) 4.50E-03EQUILIBRIUM_PHASES 10 Fix_H+ -9.32 HCl 10 save surface 3 save exchange 3 END #Contaminated soil ==> RIZO SOLUTION 3 # ==> stagnant cell-water 4.94E-03 #kg units mol/L pH 9.32 Cl 1.00E-05 K 1.00E-05 Mg 7.50E-04 S(6) 7.50E-04 Cs 3.35E-04 use surface 3 #number of surface and exchange need to be the same as the cell here solution 3 ==> cell 3 use Exchange 3 EQUILIBRIUM_PHASES 3 Fix_H+ -9.32 HCl 10 END SOLUTION 0-1 # inlet solution 0 # define solution 1 since PHREEQC wants at least 1 cell in the colum for transport ==> mobile cell. units mol/L pH 9.32 Cl 1.00E-05 K 1.00E-05 Mg 7.50E-04 S(6) 7.50E-04Solution 100 #for evaporation ENDMIX 3 # simulate % water evaporation of solution 3 then replaced by solution 0 0 0.09100 -0.093 1 END SELECTED_OUTPUT -reset false -file C:\Users\International\Documents\PhD\AlexF\Modelo alex\Fitted\RHIZO\RHIZO_moy\RHIZOsol\Sol-S\2_Fit\test_MV\data_RHIZO_M.sel-state TRUE-solution TRUE-water TRUE-step TRUE-time TRUE-high_precision TRUE-totals Cs K Na Ca Mg Illitex Montx Kaolinitex Illi Mont Kao-molalities IllitexOCs+0.5 IllitexOK+0.5 IllitexONa+0.5 IllitexOCa+1.5 IllitexOMg+1.5 IllitexO-0.5 IllitexOH+0.5 MontxOCs+0.5 MontxOK+0.5 MontxONa+0.5 MontxOCa+1.5 MontxOMg+1.5 MontxO-0.5 MontxOH+0.5 KaolinitexOCs+0.5 KaolinitexOK+0.5 KaolinitexONa+0.5 KaolinitexOCa+1.5 KaolinitexOMg+1.5 KaolinitexO-0.5 KaolinitexOH+0.5 CsIlli KIlli NaIlli CaIlli2 MgIlli2 CsMont KMont NaMont CaMont2 MgMont2 CsKao KKao NaKao CaKao2 USER_PUNCH -headings nb_cel T_exp log10(Csaq) log10(Kd) Cssurf Csexch Ksurf Kexch Nasurf Naexch Casurf Caexch Mgsurf Mgexch Csverif Csini Kini Naini Caini Mgini Csaq Kaq Naaq Caaq Mgaq -start 10 Msoil = 18.31/1000 # soil_masse(Kg) 20 Vwater = 4.94/1000 # volume batch (L) 30 MVw = Msoil/Vwater #Kg/L 40 VwM = Vwater/Msoil #L/Kg 50 Csini = sys("Cs") # (mol/L) 60 Caaq = tot("Ca") #(mol/L) 70 Csaq = tot("Cs") #(mol/L) 80 Kaq = tot("K") #(mol/L) 90 Naaq = tot("Na") #(mol/L) 100 Mgaq = tot("Mg") #(mol/L) 110 surfCs = (surf("Cs","Illitex")+ surf("Cs","Montx")+ surf("Cs","Kaolinitex")) #(mol/L) 120 exchCs = (mol("CsIlli")+ mol("CsMont")+ mol ("CsKao")) #(mol/L)130 surfK = (surf("K","Illitex")+ surf("K","Montx")+ surf("K","Kaolinitex")) #(mol/L) 140 exchK = (mol("KIlli")+ mol("KMont")+ mol ("KKao")) #(mol/L)150 surfNa = (surf("Na","Illitex")+ surf("Na","Montx")+ surf("Na","Kaolinitex")) #(mol/L) 160 exchNa = (mol("NaIlli")+ mol("NaKao")+ mol ("NaMont")) #(mol/L) 170 surfCa = (surf("Ca","Illitex")+ surf("Ca","Montx")+ surf("Ca","Kaolinitex")) #(mol/L) 180 exchCa = (mol("CaIlli2")+ mol("CaKao2")+ mol ("CaMont2")) #(mol/L)190 surfMg = (surf("Mg","Illitex")+ surf("Mg","Montx")+ surf("Mg","Kaolinitex")) #(mol/L) 200 exchMg = (mol("MgIlli2")+ mol("MgMont2")+ mol ("MgKao2")) #(mol/L)210 Kdsurf_Cs = (surfCs/Csaq)*VwM #(L/Kg) 220 Kdexch_Cs = (exchCs/Csaq)*VwM #(L/Kg) 230 Kdsurf_k = (surfK/Kaq)*VwM #(L/Kg) 240 Kdexch_k = (exchK/Kaq)*VwM #(L/Kg)250 Kdsurf_Na = (surfNa/Naaq)*VwM #(L/Kg) 260 Kdexch_Na = (exchNa/Naaq)*VwM #(L/Kg)270 Kdsurf_Ca = (surfCa/Caaq)*VwM #(L/Kg) 280 Kdexch_Ca = (exchCa/Caaq)*VwM #(L/Kg)290 Kdsurf_Mg = (surfMg/Mgaq)*VwM #(L/Kg) 300 Kdexch_Mg = (exchMg/Mgaq)*VwM #(L/Kg)310 Cssurf = Csaq*Kdsurf_Cs #(mol/Kg) 320 Csexch = Csaq*Kdexch_Cs #(mol/Kg)330 Ksurf = Kaq*Kdsurf_K #(mol/Kg) 340 Kexch = Kaq*Kdexch_K #(mol/Kg)350 Nasurf = Naaq*Kdsurf_Na #(mol/Kg) 360 Naexch = Naaq*Kdexch_Na #(mol/Kg)370 Casurf = Caaq*Kdsurf_Ca #(mol/Kg) 380 Caexch = Caaq*Kdexch_Ca #(mol/Kg)390 Mgsurf = Mgaq*Kdsurf_Mg #(mol/Kg) 400 Mgexch = Mgaq*Kdexch_Mg #(mol/Kg)410 FESCs = (surf("Cs","Illitex")) #(mol/L) 420 FESK = (surf("K","Illitex")) #(mol/L)430 EXILLICs = mol("CsIlli") #(mol/L)440 EXILLIK = mol("KIlli") #(mol/L) 450 Csfix = surfCs + exchCs #(mol/L) 460 Kd = (Csfix/Csaq)*VwM #(L/Kg) 470 Cssorb = Csaq*Kd #(mol/Kg)480 Illi_EX_CS = EXILLICs*VwM #(mol/Kg) 490 Illi_EX_K = EXILLIK*VwM #(mol/Kg)500 Cs_FES = FESCs*VwM #(mol/Kg) 510 K_FES = FESK*VwM #(mol/Kg)520 Csverif = Csaq + Cssorb*MVw #(mol/L) 530 dt= 3600 # s 540 T_R= 40821.11 # = cel renew time (s) 550 nb_cel= dt*(step_no)/ T_R #nb renewed cel 560 T_exp = dt*(step_no) #experiment time (s)570 Kini = sys("K") # (mol/L)580 Naini = sys("Na") # (mol/L)590 Caini = sys("Ca") # (mol/L)700 Mgini = sys("Mg") # (mol/L) 800 punch nb_cel T_exp log10(Csaq) log10(Kd) surfCs exchCs surfK exchK surfNa exchNa surfCa exchCa surfMg exchMg Csverif Csini Kini Naini Caini Mgini Csaq Kaq Naaq Caaq Mgaq -end TRANSPORT -cells 1 -lengths 0.01 # 1 cm sol -shifts 576 # number of time_steps total time is 24 days -time_step 3600 # each time_step (s) the MIX is performed -flow_direction diffusion_only -boundary_conditions constant closed -diffusion_coefficient 2.3E-08 -stagnant 1 -punch_cells 3 -punch_frequency 1 # sample every time step END
SOLUTION 10 units mol/L pH 9.32Na 5.00E-03K 1.60E-03Ca 4.50E-03Mg 1.00E-03N(5) 1.60E-03Cl 5.00E-03S(6) 1.00E-03C(4) 4.50E-03END SURFACE 10-equilibrate 10-sites_units density Illitex 2.07E-05 97 3695.29 # 0.5% Montx 3.80E-07 800 3695.29 # 1.1% Kaolinitex 1.46E-06 10 3695.29 # 0.7% # ^site/nm^2 ^SSA (m^2/g) ^M/V (g/L) END EXCHANGE 10-equilibrate 10 Illi 6.37E-03 Mont 3.39E-02 Kao 7.19E-04 ENDUSE solution 10USE exchange 10USE surface 10EQUILIBRIUM_PHASES 10 Fix_H+ -9.32 HCl 10 save surface 3 save exchange 3 END
ATABASE C:\Users\International\Documents\PhD\AlexF\Modelo alex\Fitted\000_Database_PHREEQC\PKDLM_BRGM_database_phreeqc_ThermoddemV1.10_06Jun2017.datSOLUTION 10 units mol/L pH 9.32Na 5.00E-03K 1.60E-03Ca 4.50E-03Mg 1.00E-03N(5) 1.60E-03Cl 5.00E-03S(6) 1.00E-03C(4) 4.50E-03END SURFACE 10-equilibrate 10-sites_units absolute Illitex 1.23E-05 97 3695.29 # 0.5% Montx 1.87E-06 800 3695.29 # 1.1% Kaolinitex 8.96E-08 10 3695.29 # 0.7% #^mol ^SSA (m^2/g) ^M/V (g/L) END EXCHANGE 10-equilibrate 10 Illi 6.37E-03 Mont 3.39E-02 Kao 7.19E-04 END# surface and exchange equilibration with natural soil waterUSE solution 10USE exchange 10USE surface 10EQUILIBRIUM_PHASES 10 Fix_H+ -9.32 HCl 10 save surface 3 save exchange 3 END #Contaminated soil ==> RIZO SOLUTION 3 # ==> stagnant cell units mol/L pH 9.32 Cl 1.00E-05 K 1.00E-05 Mg 7.50E-04 S(6) 7.50E-04 Cs 3.35E-04 use surface 3 #number of surface and exchange need to be the same as the cell here solution 3 ==> cell 3 use Exchange 3 EQUILIBRIUM_PHASES 3 Fix_H+ -9.32 HCl 10 END SOLUTION 0-1 # inlet solution 0 # define solution 1 since PHREEQC wants at least 1 cell in the colum for transport ==> mobile cell. units mol/L pH 9.32 Cl 1.00E-05 K 1.00E-05 Mg 7.50E-04 S(6) 7.50E-04Solution 100 #for evaporation ENDMIX 3 # simulate % water evaporation of solution 3 then replaced by solution 0 0 0.09100 -0.093 1 END TRANSPORT -cells 1 -lengths 0.01 # 1 cm sol -shifts 576 # number of time_steps total time is 24 days -time_step 3600 # each time_step (s) the MIX is performed -flow_direction diffusion_only -boundary_conditions constant closed -diffusion_coefficient 2.3E-08 -stagnant 1 -punch_cells 3 -punch_frequency 1 # sample every time step END
DATABASE C:\Users\International\Documents\PhD\AlexF\Modelo alex\Fitted\000_Database_PHREEQC\PKDLM_BRGM_database_phreeqc_ThermoddemV1.10_06Jun2017.dat SOLUTION 10-water 4.94E-03 #kg units mol/L pH 9.32Na 5.00E-03K 1.60E-03Ca 4.50E-03Mg 1.00E-03N(5) 1.60E-03Cl 5.00E-03S(6) 1.00E-03C(4) 4.50E-03END SURFACE 10-equilibrate 10-sites_units absolute Illitex 6.10E-08 97 18.31 Montx 9.24E-09 800 18.31 Kaolinitex 4.44E-10 10 18.31 # ^mol ^SSA (m^2/g) ^M (g) EXCHANGE 10-equilibrate 10 Illi 3.16E-05 Mont 1.68E-04 Kao 3.56E-06 END# surface and exchange equilibration with natural soil waterUSE solution 10USE exchange 10USE surface 10EQUILIBRIUM_PHASES 10 Fix_H+ -9.32 HCl 10 save surface 3 save exchange 3 END # Equilibrage spike EQUILIBRIUM_PHASES 10 Fix_H+ -9.32 HCl 10 save surface 3 save exchange 3 END #Contaminated soil ==> RIZO SOLUTION 3 # ==> stagnant cell-water 4.94E-03 #kg units mol/L pH 9.32 Cl 1.00E-05 K 1.00E-05 Mg 7.50E-04 S(6) 7.50E-04 Cs 3.35E-04 use surface 3 #number of surface and exchange need to be the same as the cell here solution 3 ==> cell 3 use Exchange 3 EQUILIBRIUM_PHASES 3 Fix_H+ -9.32 HCl 10 END SOLUTION 0 # inlet solution 0 # define solution 1 since PHREEQC wants at least 1 cell in the colum for transport ==> mobile cell. units mol/L pH 9.32 Cl 1.00E-05 K 1.00E-05 Mg 7.50E-04 S(6) 7.50E-04Solution 1Solution 100 #for evaporation ENDMIX 3 # simulate % water evaporation of solution 3 then replaced by solution 0 0 0.09100 -0.093 1 END TRANSPORT -cells 1 -lengths 0.01 # 1 cm sol -shifts 576 # number of time_steps total time is 24 days -time_step 3600 # each time_step (s) the MIX is performed -flow_direction diffusion_only -boundary_conditions constant closed -diffusion_coefficient 2.3E-08 -stagnant 1 -punch_cells 3 -punch_frequency 1 # sample every time step END
-----------------------------------------Beginning of batch-reaction calculations.-----------------------------------------Reaction step 1.Using mix 3. Mixture 3. 9.000e-02 Solution 0 1.000e+00 Solution 3 -9.000e-02 Solution 100 -----------------------------Solution composition------------------------------ Elements Molality Moles Cl 1.090e-05 1.090e-05 Cs 3.350e-04 3.350e-04 K 1.090e-05 1.090e-05 Mg 8.176e-04 8.176e-04 S 8.176e-04 8.176e-04
-----------------------------------------Beginning of batch-reaction calculations.-----------------------------------------Reaction step 1.Using mix 3. Mixture 3. 9.000e-02 Solution 0 1.000e+00 Solution 3 -9.000e-02 Solution 100 -----------------------------Solution composition------------------------------ Elements Molality Moles Cl 1.922e-04 9.494e-07 Cs 3.350e-04 1.655e-06 K 1.922e-04 9.494e-07 Mg 1.441e-02 7.121e-05 S 1.441e-02 7.121e-05