RATESCO2(g)# d(CO2) / dt = -k * (P_aq - P_gas)# parms 1= log(P_CO2)_gas. 2= reaction factor relative to calcite rate -start 10 P_aq = SR("CO2(g)") 20 dCO2 = parm(2) * (10^parm(1) - P_aq) * TIME 30 SAVE dCO2 50 PUT(parm(1), 15) # log10 PCO2 in atmosphere 60 PUT(parm(2), 16) # rate constant 70 PUT(dCO2, 5) -end[13C]O2(g)# d(13CO2) / dt = -k * (P_aq - P_gas)# parm(1) is 13C of the atmosphere-start10 pCO2_atm = 10^GET(15) # PCO2 in atmosphere20 p13CO2_atm = (parm(1)/1000 + 1)*0.0111802 * pco2_atm # P13CO2 in atmosphere30 alpha = 10^(LK_NAMED("Log_alpha_13C_CO2(aq)/CO2(g)"))40 d13CO2 = GET(16) * alpha * (p13CO2_atm - SR("[13C]O2(g)"]) * TIME 50 SAVE d13CO2-endCalcite# Calcite rate modified from Plummer et al., 1978# parms 1= A/V, 1/dm. 2= exponent for m/m0. -start 10 si_cc = si("Calcite") 20 if (m <= 0 and si_cc < 0) then goto 200 30 k1 = 10^(0.198 - 444.0 / (273.16 + tc) ) 40 k2 = 10^(2.84 - 2177.0 / (273.16 + tc) ) 50 if tc <= 25 then k3 = 10^(-5.86 - 317.0 / (273.16 + tc) ) 60 if tc > 25 then k3 = 10^(-1.1 - 1737.0 / (273.16 + tc) ) 70 t = 1 80 if m0 > 0 then t = m/m0 90 if t = 0 then t = 1 100 moles = parm(1) * 0.1 * (t)^parm(2) 110 moles = moles * (k1 * act("H+") + k2 * act("CO2") + k3 * act("H2O")) 120 moles = moles * (1 - 10^(2/3*si_cc)) 130 moles = moles * time 140 if (moles > m) then moles = m 150 if (moles >= 0) then goto 200 160 temp = tot("Ca") 170 mc = tot("C(4)") 180 if mc < temp then temp = mc 190 if -moles > temp then moles = -temp 200 SAVE moles 210 PUT(moles, 4) -endCa[13C]O3# Calcite precipitates at equilibrium fractionation-start20 alpha = 10^(LK_NAMED("Log_alpha_13C_Calcite/CO2(aq)")) 30 dCa13CO3 = GET(4) * CALC_VALUE("R(13C)_CO2(aq)") * alpha 40 SAVE dCa13CO3-end SOLUTION 1 Xul Ha spring temp 28.7 pH 6.62 density 1 C(4) 4.88 #244 ppm [13C](4) -13 Ca 13.62 #546 ppm Cl 5.55 #197 ppm K .01 #0.3 ppm Mg 3.75 #91 ppm Na 1.74 #40 ppm S(6) 14.6 #1400 ppmKINETICS 1 case A CO2(g) -m0 0 -parm -3.4 0.001 [13C]O2(g) -m0 0 -parm -8 Calcite -m0 0 -parm 60 0.67 Ca[13C]O3 -m0 0 -step 10*10 10*30 10*100 10*300 INCREMENTAL_REACTIONSUSER_GRAPH 1 Degassing CO2 and [13C]O2, calcite precip at eq fractionation -headings time d13C_sol d13C_HCO3- d13C_CO2(aq) d13C_Calcite Apparent_d13C_gas pH -axis_titles "Seconds" "d13C" "pH" -axis_scale x_axis auto auto auto auto log -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME 20 GRAPH_Y ISO("[13C]")30 GRAPH_Y ISO("R(13C)_HCO3-")40 GRAPH_Y ISO("R(13C)_CO2(aq)")50 GRAPH_Y (KIN_DELTA("Ca[13C]O3")/KIN_DELTA("Calcite")/0.0111802 - 1)*1e360 GRAPH_Y (SR("[13C]O2(g)")/SR("CO2(g)")/0.0111802 - 1) * 100070 GRAPH_SY -LA("H3O+") -end -active trueUSER_GRAPH 2 -headings Time log10(PCO2) log10(P[13C]O2) SI("Calcite") Calcite -axis_titles "Seconds" "SI" "Moles" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME 20 GRAPH_Y SI("CO2(g)"), SI("[13C]O2(g)")30 GRAPH_Y SI("Calcite")40 GRAPH_SY KIN("Calcite") -end -active trueEND