EQUILIBRIUM_PHASES 1 C2S 0 0 C3A 0 0 C3AH6 0 0 C3FH6 0 0 C3S 0 0 C4AF 0 0 CSH3T-TobH 0 0SOLUTION 1 temp 20 pH 7 pe 4 redox pe units mmol/kgw density 1 -water 0.04 # kgREACTION 1 C4AF 0.0174 0.4672 moles in 1 stepsSAVE solution 1RATES C4AF_RATE_HYDRATION-start 10 REM PARM(1) = A,Blaine surface area of cement, m^2/kg 20 REM PARM(2) = A0,reference surface area of cement, m^2/kg 30 REM PARM(3) = E,the apparent activation energy of C4AF, j/Mmol 40 REM PARM(4) = R,ideal gas constant, L·Pa·K-1·mol-1 50 REM PARM(5) = T0,the reference temperature, K 60 REM M = the hydration degree 70 a = M 80 r1 = 0.53*(1-a)*((-1*LOG(1-a))^0.3) 90 r2 = (((1-a)^0.67)*0.015)/(1-((1-a)^0.34))100 r3 = (0.4*(1-a)^3.7)110 IF(a > 0.58) THEN b = (((0.58-a)*3.333)+1)^4 ELSE b = 1120 min = r1130 IF min > r2 THEN min = r2140 IF min > r3 THEN min = r3150 a_rate = b*min*2.0736*(PARM(1)/PARM(2))*EXP((PARM(3)/PARM(4))*((1/PARM(5))-(1/TK)))160 a_delta = a_rate*TIME/86400170 SAVE-a_delta-end C4AF-start10 rate = KIN("C4AF_RATE_HYDRATION")*M20 SAVE rate * time / 86400-endKINETICS 1C4AF -formula (CaO)4(Al2O3)(Fe2O3) 1 -m 0.0174 -m0 0.0174 -tol 1e-008C4AF_RATE_HYDRATION -formula H 0 -m 0.001 -m0 0.001 -parms 413 385 34.087 8.3144 293.15 -tol 1e-008-steps 8640000 in 100 steps # seconds-step_divide 1-runge_kutta 3-bad_step_max 5000USER_GRAPH 2 -headings Time C4AF pH -axis_titles "Time (days)" "C4AF (moles)" "pH" -chart_title "C4AF" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X total_time/8640020 GRAPH_Y KIN("C4AF")30 GRAPH_SY -LA("H+") -end -active trueUSER_GRAPH 1 -axis_titles "Time (days)" "Hydration degree" "" -chart_title "Hydration degree of C4AF" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME/8640020 GRAPH_Y KIN("C4AF_RATE_HYDRATION") -end -active trueEND
RATES C4AF_RATE_HYDRATION-start 10 REM PARM(1) = A,Blaine surface area of cement, m^2/kg 20 REM PARM(2) = A0,reference surface area of cement, m^2/kg 30 REM PARM(3) = E,the apparent activation energy of C4AF, j/Mmol 40 REM PARM(4) = R,ideal gas constant, L·Pa·K-1·mol-1 50 REM PARM(5) = T0,the reference temperature, K 60 REM M = the hydration degree 70 a = M 80 r1 = 0.53*(1-a)*((-1*LOG(1-a))^0.3) 90 r2 = (((1-a)^0.67)*0.015)/(1-((1-a)^0.34))100 r3 = (0.4*(1-a)^3.7)110 IF(a > 0.58) THEN b = (((0.58-a)*3.333)+1)^4 ELSE b = 1120 min = r1130 IF min > r2 THEN min = r2140 IF min > r3 THEN min = r3150 a_rate = b*min*2.0736*(PARM(1)/PARM(2))*EXP((PARM(3)/PARM(4))*((1/PARM(5))-(1/TK)))160 a_delta = a_rate*TIME/86400170 SAVE -a_delta180 PUT(a_delta, 1)-end C4AF-start10 rate = GET(1) * M020 SAVE rate -end