SOLUTION 1ENDUSE solution 1REACTION 1Pyrite 11e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1EQUILIBRIUM_PHASES 1O2(g) -0.7 10Goethite 0 0USER_GRAPH 1 -headings rxn pH -axis_titles "log10 moles, Pyrite oxidized" "pH" "" -start10 GRAPH_X LOG10(RXN)20 GRAPH_Y -LA("H+") -endEND

SOLUTION 1 (column) temp 25 pH 7 EQUILIBRIUM_PHASES 1 ### Equilibrates with the atmosphere CO2(g) -3.5 10 Gibbsite 0 10 Goethite 0 10 O2(g) -0.699 10 SAVE SOLUTION 1 ENDSURFACE 1-equilibrate with solution 1Hfo_w 6 0.8 40Hfo_s 0.16-Donnan END############################################## KINETICS ############################################################## Calculations similar to that of Albite in Database of llnl.dat# Assume tailings major components that are reacting to generate the leachate chemistry are Forsterite and Pyrrhotite# Assume tailings is 51.19% Forterite by mass in 1 mm spheres (radius 0.5 mm)# Assume tailings is 1% Pyrrhotite, which accounts for those that are liberated and exposed to react.# Assume density of tailings is 2600 kg/m^3 = 2.6 kg/L. This is primarily due to the high concentration (about 50%) of forsterite which makes bulk# of the tailings## second parm is assumed to be 2/3 for uniformly dissolving spheres andRATES# Pyrite -start1 REM Williamson and Rimstidt, 19942 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite)3 REM PARM(2) = exp for (M/M0)4 REM PARM(3) = exp for O25 REM PARM(4) = exp for H+10 REM Dissolution in presence of DO20 if (M <= 0) THEN GOTO 20030 if (SI("Pyrite") >= 0) THEN GOTO 20040 log_rate = 24 * PARM(3)*LM("O2") * PARM(4)*LM("H+")50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0)60 moles = 10^(log_area + log_rate) * TIME200 SAVE moles -endLabradorite -start1 rem parm(1) = log10(A/V, 1/dm)2 rem parm(2) = exp for H+10 if (m <= 0) then goto 20020 if (si("Labradorite") >= 0) then goto 20030 lograte = 7.87 + PARM(1) + PARM(2)+lm("H+")40 moles = (10^lograte)*TIME200 save moles -end Chalcopyrite -start1 REM Williamson and Rimstidt, 19942 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite)3 REM PARM(2) = exp for (M/M0)4 REM PARM(3) = exp for O25 REM PARM(4) = exp for H+10 REM Dissolution in presence of DO20 if (M <= 0) THEN GOTO 20030 if (SI("Pyrite") >= 0) THEN GOTO 20040 log_rate = 24.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+")50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0)60 moles = 10^(log_area + log_rate) * TIME200 SAVE moles -end Chlorite14A -start1 rem parm(1) = log10(A/V, 1/dm)2 rem parm(2) = exp for H+10 if (m <= 0) then goto 20020 if (si("Chlorite14A") >= 0) then goto 20030 lograte = -11.11 + PARM(1) + PARM(2)+lm("H+")40 moles = (10^lograte)*TIME50 if (moles > m) then moles = m200 save moles -endENDKINETICS 1-step 86400Pyrite -m0 1.04 -parms -0.72 0.67 0.5 -0.11Labradorite -m0 0.05 -parms 0.55 6.6Chalcopyrite -m0 0.086 -parms -2.46 0.67 0.5 -0.11Chlorite14A -m0 0.2 -parms -5.93 0.5-step_divide 1-runge_kutta 6ENDUSE solution 1USE equilibrium_phases 1USE kinetics 1USE surface 1END