TITLE forward model SOLUTION 1 temp 25 pH 7.2 pe 4 redox pe units mg/l density 1 Cl 11 Alkalinity 36.94 as HCO3 S(6) 16.6 Ca 12.4 K 4.5 Na 16.06 Mg 2.46 F 0.86 N 4.75 Ba 0.06 Si 11.32 Sr 0.1 Al 0.058 -water 1 # kgREACTION_TEMPERATURE 1 100EQUILIBRIUM_PHASES 1 Albite 0 0 Anorthite 0 0 Ca-Montmorillonite 0 0 Calcite 0 0 Chlorite(14A) 0 0 Dolomite 0 0 Illite 0 0 K-feldspar 0 0 Quartz 0 0 RATESAlbite-start10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.320 RESTORE 1030 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH40 DATA 3500, 2000, 2500, 200050 RESTORE 4060 READ e_H, e_H2O, e_OH, e_CO270 pk_CO2 = 1380 n_CO2 = 0.6100 REM Generic rate follows110 dif_temp = 1/TK - 1/281120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")130 REM rate by H+140 pk_H = pk_H + e_H * dif_temp150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)160 REM rate by hydrolysis170 pk_H2O = pk_H2O + e_H2O * dif_temp180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)190 REM rate by OH-200 pk_OH = pk_OH + e_OH * dif_temp210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH220 REM rate by CO2230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2250 rate = rate_H + rate_H2O + rate_OH + rate_CO2260 area = PARM(1) * M0 *(M/M0)^0.67270 rate = PARM(2) * area * rate * (1-SR("Albite"))280 moles = rate * TIME290 SAVE moles -end Anorthite-start 10 DATA 6.9, 1.0, 4e-6, 0.4, 500e-6, 0.25, 13.2, 0.14, 0.25, 12.0, 0.25 20 RESTORE 10 30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH 40 DATA 3500, 2000, 2500, 2000 50 RESTORE 40 60 READ e_H, e_H2O, e_OH, e_CO2 70 pk_CO2 = 13 80 n_CO2 = 0.6100 dif_temp = 1/TK - 1/281110 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")120 pk_H = pk_H + e_H * dif_temp130 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)140 pk_H2O = pk_H2O + e_H2O * dif_temp150 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)160 REM rate by OH-170 pk_OH = pk_OH + e_OH * dif_temp180 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH190 pk_CO2 = pk_CO2 + e_CO2 * dif_temp200 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2210 rate = rate_H + rate_H2O + rate_OH + rate_CO2220 rate = rate * Parm(1) * m0 * (m/m0)^0.67 * (1 - SR("Anorthite"))240 moles = rate * TIME250 SAVE moles260 PUT(rate,1)-end Quartz-start 1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol 3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) 4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz 5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 3510 dif_temp = 1/TK - 1/29820 pk_w = 13.7 + 4700.4 * dif_temp40 rate = PARM(1) * M0 * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz"))50 moles = rate * time60 save moles-endK-feldspar -start1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-12 REM PARM(1) = Specific area of Kspar m^2/mol Kspar3 REM PARM(2) = Adjusts lab rate to field rate4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281)5 REM K-Feldspar parameters10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.320 RESTORE 1030 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH40 DATA 3500, 2000, 2500, 200050 RESTORE 4060 READ e_H, e_H2O, e_OH, e_CO270 pk_CO2 = 1380 n_CO2 = 0.6100 REM Generic rate follows110 dif_temp = 1/TK - 1/281120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")130 REM rate by H+140 pk_H = pk_H + e_H * dif_temp150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC)160 REM rate by hydrolysis170 pk_H2O = pk_H2O + e_H2O * dif_temp180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC)190 REM rate by OH-200 pk_OH = pk_OH + e_OH * dif_temp210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH220 REM rate by CO2230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2250 rate = rate_H + rate_H2O + rate_OH + rate_CO2260 area = PARM(1) * M0 *(M/M0)^0.67270 rate = PARM(2) * area * rate * (1-SR("K-feldspar"))280 moles = rate * TIME290 SAVE moles-end KINETICS 1Albite -formula NaAlSi3O8 -m 11.4 -m0 11.4 -parms 0.62 0.1 -tol 1e-08Anorthite -formula CaAl2Si2O8 -m 10.8 -m0 10.8 -parms 0.65 0.1 -tol 1e-08K-feldspar -formula KAlSi3O8 -m 29.35 -m0 29.35 -parms 0.65 0.1 -tol 1e-08Quartz -formula SiO2 -m 85 -m0 85 -parms 0.14 0.1 -tol 1e-08-steps 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10 year-step_divide 1-runge_kutta 3-bad_step_max 500INCREMENTAL_REACTIONS trueUSER_GRAPH 1 -headings TOTAL_TIME Calcite Dolomite Quartz Illite K-Feldspar Albite Ca-Montmorillonite Chlorite(14A) Anorthite -axis_titles "TOTAL_TIME" "Secondary mineral, Log (moles)" "" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start 10 GRAPH_X SIM_TIME/31536000 20 GRAPH_Y LOG10(EQUI("Calcite")) 30 GRAPH_Y LOG10(EQUI("Dolomite")) 40 GRAPH_Y LOG10(EQUI("Quartz")) 50 GRAPH_Y LOG10(EQUI("Illite")) 60 GRAPH_Y LOG10(EQUI("K-Feldspar")) 70 GRAPH_Y LOG10(EQUI("Albite")) 80 GRAPH_Y LOG10(EQUI("Ca-Montmorillonite")) 90 GRAPH_Y LOG10(EQUI("Chlorite(14A)"))100 GRAPH_Y LOG10(EQUI("Anorthite")) -end -active trueUSER_GRAPH 2 -headings SIM_TIME Na Si K Al Ca Mg H+ -axis_titles "SIM_TIME" "Log Molality, Log Activity H+" "" -initial_solutions false -connect_simulations false -plot_concentration_vs x -start10 GRAPH_X SIM_TIME/3153600020 GRAPH_Y LOG10(TOT("Na"))30 GRAPH_Y LOG10(TOT("Si"))40 GRAPH_Y LOG10(TOT("K"))50 GRAPH_Y LOG10(TOT("Al"))60 GRAPH_Y LOG10(TOT("Ca"))70 GRAPH_Y LOG10(TOT("Mg"))80 GRAPH_Y LA("H+") -end -active trueUSER_GRAPH 3 -headings TIME Albite Quartz K-Feldspar Anorthite -axis_titles "TIME" "Reactant transfer" "" -chart_title "TIME-Reactant" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X SIM_TIME/3153600020 GRAPH_Y -KIN_DELTA("Albite")30 GRAPH_Y -KIN_DELTA("Quartz")40 GRAPH_Y -KIN_DELTA("K-Feldspar")50 GRAPH_Y -KIN_DELTA("Anorthite") -end -active trueEND