SOLUTION_MASTER_SPECIES Fe_di Fe_di+2 0 Fe_di 55.847 Fe_tri Fe_tri+3 0 Fe_tri 55.847SOLUTION_SPECIESFe_di+2 = Fe_di+2 log_k 0Fe_di+2 + H2O = Fe_diOH+ + H+ log_k -9.5 delta_h 13.2 kcalFe_di+2 + 3H2O = Fe_di(OH)3- + 3H+ log_k -31.0 delta_h 30.3 kcalFe_tri+3 = Fe_tri+3 log_k 0Fe_tri+3 + H2O = Fe_triOH+2 + H+ log_k -2.19 delta_h 10.4 kcalFe_tri+3 + 2H2O = Fe_tri(OH)2+ + 2H+ log_k -5.67 delta_h 17.1 kcalFe_tri+3 + 3H2O = Fe_tri(OH)3 +3H+ log_k -12.56 delta_h 24.8 kcalPHASESFe_tri(OH)3(a) Fe_tri(OH) 3 + 3H+ = Fe_tri+3 + 3H2O log_k 4.891SOLUTION 1 temp 25 pH 3.68 pe 4 O2(g) -0.67 redox pe units mg/l density 1 Fe_di 349 Fe_tri 5 Cl 649 charge Na 649 -water 1 # kg EQUILIBRIUM_PHASES 1 Fe_tri(OH)3(a) 0 0 O2(g) -0.67RATES Fe_di_ox-start10 Fe_di = TOT("Fe_di")20 if(Fe_di<=0) then goto 20030 mo2 = mol("O2")40 mNO3 = mol("NO3-")50 moles = 10^13 * (ACT("OH-"))^2*(mNO3 + mo2)*Fe_di * TIME200 SAVE moles-end Fe_tri(OH)3(a)-start10 Ao = parm(1)20 V = parm(2)30 rate = 10^-14*(1-SR("Fe_tri(OH)3(a)")) * A0/V*(m/m0)^0.6740 moles = rate * time50 SAVE moles-endKINETICS 1Fe_di_ox -formula Fe_di -1 Fe_tri 1Fe_tri(OH)3(a) -formula Fe_tri(OH) 1 -m 1 -m0 1 -parms 22.6 0.162-steps 1440 in 60 steps # secondsINCREMENTAL_REACTIONS TrueSELECTED_OUTPUT -file Kinetiks.out.xls -reset false -time true -step true -ph trueUSER_PUNCH-headings -start10 PUNCH SIM_TIME/3600/24, TOT("Fe_di")*1000*55.847, TOT("Fe_tri")*1000*55.847, -LA("H+"), SI("Fe_tri(OH)3(a)")-endUSER_GRAPH 1 -headings Days, Fe(2), Fe(3), pH, SI-Fi_tri(OH)3a -axis_titles "Time (days)" "mg/L" "pH" -chart_title "Kinetics of Fe (2) oxidation and Fe(3) precipitation" -axis_scale sy_axis 0 7 3.5 3.5 -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME / 3600 / 2420 GRAPH_Y TOT("Fe_di")*1000*55.84730 GRAPH_Y TOT("Fe_tri")*1000*55.84740 GRAPH_SY -LA("H+") -endEND
SOLUTION_MASTER_SPECIES Fe_di Fe_di+2 0 Fe_di 55.847 Fe_tri Fe_tri+3 0 Fe_tri 55.847SOLUTION_SPECIESFe_di+2 = Fe_di+2 log_k 0Fe_di+2 + H2O = Fe_diOH+ + H+ log_k -9.5 delta_h 13.2 kcalFe_di+2 + 3H2O = Fe_di(OH)3- + 3H+ log_k -31.0 delta_h 30.3 kcalFe_tri+3 = Fe_tri+3 log_k 0Fe_tri+3 + H2O = Fe_triOH+2 + H+ log_k -2.19 delta_h 10.4 kcalFe_tri+3 + 2H2O = Fe_tri(OH)2+ + 2H+ log_k -5.67 delta_h 17.1 kcalFe_tri+3 + 3H2O = Fe_tri(OH)3 +3H+ log_k -12.56 delta_h 24.8 kcalPHASESGoethite Fe_triOOH + 3H+ = Fe_tri+3 + 2H2O log_k -1.0ENDSOLUTION 1 temp 25 pH 6.2 pe 4 O2(g) -0.67 redox pe units mg/l density 1 Al 43.2 Cu 1.4 Fe_di 351 Mn 21.8 Zn 5.5 -water 1 # kgEQUILIBRIUM_PHASES 1 O2(g) -0.67 RATES Fe_di_ox-start10 Fe_di = TOT("Fe_di")20 if (Fe_di <= 0) then goto 20030 p_o2 = 10^(SI("O2(g)"))40 moles = (2.91e-9 + 1.33e12 * (ACT("OH-"))^2 * p_o2) * Fe_di * TIME200 SAVE moles-endPRINT -equilibrium_phases true -kinetics true -saturation_indices true -totals true -warnings -1KINETICS 1Fe_di_ox -formula Fe_di -1 Fe_tri 1 -m 1 -m0 1 -tol 1e-008-steps 100 400 10800 21600 50400 86400 172800 172800 172800 172800-step_divide 1-runge_kutta 3-bad_step_max 500INCREMENTAL_REACTIONS TrueSELECTED_OUTPUT -file selectedbasic.out.xlsUSER_PUNCH-headings Days Fe(2) Fe(3) pH SI_goethite-start10 PUNCH SIM_TIME/3600/24 TOT("Fe_di")*1e6, TOT("Fe_tri")*1e6, -LA("H+"), SI("Goethite")-endUSER_GRAPH 1 -headings Time Fe(2) Fe(3) pH -axis_titles "Time (days)" "mmol/kg of water" "pH" -chart_title "Oxidation of ferrous iron" -axis_scale sy_axis 0 8 4 4 -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME / 3600 / 2420 GRAPH_Y TOT("Fe_di")*1e6, TOT("Fe_tri")*1e630 GRAPH_SY -LA("H+") -end -active true
SOLUTION_MASTER_SPECIES Fe_di Fe_di+2 0 Fe_di 55.847 Fe_tri Fe_tri+3 0 Fe_tri 55.847SOLUTION_SPECIESFe_di+2 = Fe_di+2 log_k 0Fe_di+2 + H2O = Fe_diOH+ + H+ log_k -9.5 delta_h 13.2 kcalFe_di+2 + 3H2O = Fe_di(OH)3- + 3H+ log_k -31.0 delta_h 30.3 kcalFe_tri+3 = Fe_tri+3 log_k 0Fe_tri+3 + H2O = Fe_triOH+2 + H+ log_k -2.19 delta_h 10.4 kcalFe_tri+3 + 2H2O = Fe_tri(OH)2+ + 2H+ log_k -5.67 delta_h 17.1 kcalFe_tri+3 + 3H2O = Fe_tri(OH)3 +3H+ log_k -12.56 delta_h 24.8 kcalPHASESGoethite Fe_triOOH + 3H+ = Fe_tri+3 + 2H2O log_k -1.0ENDSOLUTION 0 temp 25 pH 6.5 pe 4 O2(g) -0.67 redox pe units mg/l density 1 Al 43.2 Cu 1.4 Fe_di 351 Mn 21.8 Zn 5.5 -water 1 # kg EQUILIBRIUM_PHASES 1 O2(g) -0.67 RATES Fe_di_ox-start10 Fe_di = TOT("Fe_di")20 if (Fe_di <= 0) then goto 20030 p_o2 = SR("O2(g)")40 moles = (2.91e-9 + 1.33e12 * (ACT("OH-"))^2* p_o2)* Fe_di*TIME100 PRINT moles,(2.91e-9 + 1.33e12 * (ACT("OH-"))^2* p_o2)* Fe_di*TIME200 SAVE moles-endSELECTED_OUTPUT -file KPedited.out.xlsINCREMENTAL_REACTIONS TrueKINETICS 1Fe_di_ox -formula Fe_di -1 Fe_tri 1 -m 1 -m0 1 -tol 1e-008-steps 640800 in 200 steps # seconds-step_divide 0.0001-runge_kutta 3-bad_step_max 500 SOLUTION 1-4 temp 25 pH 7 pe 4 redox pe units mg/l density 1 O(0) 2.1 -water 1 # kgTRANSPORT -cells 4 -shifts 10 -time_step 300 # seconds -dispersivities 4*0.005 -correct_disp true -diffusion_coefficient 0USER_PUNCH-headings Days Fe(2) Fe(3) pH SI_goethite-start10 PUNCH SIM_TIME/3600/24 TOT("Fe_di")*1e6, TOT("Fe_tri")*1e6, -LA("H+"), SI("Goethite")-endUSER_GRAPH 1 -headings Time Fe(2) Fe(3) pH -axis_titles "Time (days)" "mmol/kg of water" "pH" -chart_title "Oxidation of ferrous iron" -axis_scale sy_axis 0 8 4 4 -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X TOTAL_TIME / 3600 / 2420 GRAPH_Y TOT("Fe_di")*1e6, TOT("Fe_tri")*1e630 GRAPH_SY -LA("H+") -end -active trueUSER_GRAPH 2 -headings Fe(2) Fe(3) -axis_titles "Pore volumes" "Millimoles per kilogram water" -chart_title "Using TRANSPORT Data Block" -axis_scale x_axis 0 3 -axis_scale y_axis 0 1.5 -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 x = (STEP_NO + 0.5) / cell_no20 PLOT_XY x, TOT("Fe_di")*1000, symbol = plus, symbol_size = 230 PLOT_XY x, TOT("Fe_di")*1000, symbol = plus, symbol_size = 2 -end -active trueSELECTED_OUTPUT -file Transport.out.xls -reset false -step -totals Fe_di Fe_tri -high_precision trueEND
SOLUTION_MASTER_SPECIES Fe_di Fe_di+2 0 Fe_di 55.847 Fe_tri Fe_tri+3 0 Fe_tri 55.847SOLUTION_SPECIESFe_di+2 = Fe_di+2 log_k 0Fe_di+2 + H2O = Fe_diOH+ + H+ log_k -9.5 delta_h 13.2 kcalFe_di+2 + 3H2O = Fe_di(OH)3- + 3H+ log_k -31.0 delta_h 30.3 kcalFe_tri+3 = Fe_tri+3 log_k 0Fe_tri+3 + H2O = Fe_triOH+2 + H+ log_k -2.19 delta_h 10.4 kcalFe_tri+3 + 2H2O = Fe_tri(OH)2+ + 2H+ log_k -5.67 delta_h 17.1 kcalFe_tri+3 + 3H2O = Fe_tri(OH)3 +3H+ log_k -12.56 delta_h 24.8 kcalPHASESGoethite Fe_triOOH + 3H+ = Fe_tri+3 + 2H2O log_k -1.0RATES Fe_di_ox-start10 Fe_di = TOT("Fe_di")20 if (Fe_di <= 0) then goto 20030 p_o2 = SR("O2(g)")40 moles = (2.91e-9 + 1.33e12 * (ACT("OH-"))^2* p_o2)* Fe_di*TIME100 PRINT moles,(2.91e-9 + 1.33e12 * (ACT("OH-"))^2* p_o2)* Fe_di*TIME200 SAVE moles-endENDSOLUTION 0 temp 25 pH 6.5 pe 4 O2(g) -0.67 redox pe units mg/l density 1 Al 43.2 Cu 1.4 Fe_di 351 Mn 21.8 Zn 5.5 -water 1 # kg ENDEQUILIBRIUM_PHASES 1 O2(g) -0.67ENDKINETICS 1-4Fe_di_ox -formula Fe_di -1 Fe_tri 1 -m 1 -m0 1 -tol 1e-008ENDSOLUTION 1-4 temp 25 pH 7 pe 4 redox pe units mg/l density 1 O(0) 2.1 -water 1 # kgENDTRANSPORT -cells 4 -shifts 10 -time_step 300 # seconds -dispersivities 4*0.005 -correct_disp true -diffusion_coefficient 0 -punch_frequency 10USER_GRAPH 1 -headings Time Fe(2) Fe(3) pH -axis_titles "Time (days)" "umol/kg of water" "pH" -chart_title "Oxidation of ferrous iron" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X dist20 GRAPH_Y TOT("Fe_di")*1e6, TOT("Fe_tri")*1e630 GRAPH_SY -LA("H+") -end -active trueEND