SOLUTION 1 temp 25 pH 2.5 pe 4 redox pe units mg/l density 1 C(4) 0.6 as HCO3 Ca 500 Cl 5.8 Fe 3100 Mg 97 Na 0 S(6) 15000 charge Si 1 Zn 610 -water 1 # kgEQUILIBRIUM_PHASES 1#atmospheric gasesCO2(g) -3.5O2(g) -0.67#soil phases (update to match XRD)Dolomite 0 0 Quartz 0 0 Chalcedony 0 0#secondary phasesFe(OH)3(a) 0 0Gypsum 0 0SAVE SOLUTION 1ENDUSER_GRAPH 110 GRAPH_X (total_time)20 GRAPH_Y SI("Calcite")30 GRAPH_SY -LA("H+")ENDKINETICS 1Calcite -m 0.05 -m0 0.05 -parms 125000.0 0.6 # 30 -tol 1.e-8-steps 10000 in 10 steps #secondsENDRUN_CELLS-cell 1-initial_time 0ENDKINETICS 1Calcite -m 0.05 -m0 0.05 -parms 125000.0 0.6 # 30 -tol 1.e-8-steps 10000 in 20 steps #secondsRUN_CELLS-cell 1-initial_time 10000END
SOLUTION 1# Analytical Results for Pond 3, from Table 20 of EE/CApH 2.5 # Default: 7.pe 4.0 #11.59 # Default: 4., 11.59 from tailings beaker testredox pe-units mg/L # Default: mmol/kgwAl 100 mg/L#As 13.0 mg/LBa 1.7 mg/L#Be 0.018 mg/LCd 1.7 mg/LCa 500.0 mg/L#Cr 3.5 mg/L#Co 0.13 mg/LCu 8.9 mg/LFe 3100 mg/L# Pb non-detect, confirmed in EECA text, but look at new dataMg 97 mg/LMn 1200 mg/L #should this be ug/L ??? listed as mg/L in EECA#Hg .00047 mg/L#Ni .3 mg/L#V .49 mg/LZn 610 mg/LNa 0.0 mg/L# Chemical symbol from the 1st column in SOLUTION_MASTER_SPECIES, concentration, concentration is adapted to charge balanceCl 5.8F 12.0 mg/LS(6) 15000 charge # concentration is adapted to charge balanceC(4) 0.6 as HCO3 # Concentration is in mg of HCO3 = 0.6 / 0.61 = 0.98 mmol/LSi 1.0 mg/LEQUILIBRIUM_PHASES 1 # cell number or a range of cells. Default: 1.#atmospheric gasesCO2(g) -3.5O2(g) -0.67#soil phases (update to match XRD)#Calcite 0 0 # name (must be defined in PHASES), Saturation Index (Default: 0), initial amount (moles, default: 10 moles)Dolomite 0 0 #diss # Dolomite can dissolve onlyQuartz 0 0 #precipitate # Quartz can precipitate only if uncommentedChalcedony 0 0#secondary phasesFe(OH)3(a) 0 0Gypsum 0 0#Goethite 0 0SAVE SOLUTION 1ENDSELECTED_OUTPUT # add this block where writing to output file should begin-file D:\GoogleDrive\GradSchool\Research\Caselton\PHREEQC\BatchRxnSulfideTailingsAlluvium.csv # file name (plot in jupyter notebook)-selected_out true-user_punch true-high_precision false-reset false-pH true-pe true-water true-ionic_strength true-time true-solution true-totals Ca Fe S(6)-equilibrium_phases Fe(OH)3(a) Gypsum-kinetic_reactants Calcite-saturation_indices Fe(OH)3(a) Calcite Gypsum-calculate_values SC_T25RATESCalcite-start1 rem M = current number of moles of calcite2 rem M0 = number of moles of calcite initially present3 rem PARM(1) = A/V, cm^2/L4 rem PARM(2) = exponent for M/M010 si_cc = SI("Calcite")20 if (M <= 0 and si_cc < 0) then goto 20030 k1 = 10^(0.198 - 444.0 / TK )40 k2 = 10^(2.84 - 2177.0 / TK)50 if TC <= 25 then k3 = 10^(-5.86 - 317.0 / TK )60 if TC > 25 then k3 = 10^(-1.1 - 1737.0 / TK )70 t = 180 if M0 > 0 then t = M/M090 if t = 0 then t = 1100 area = PARM(1) * (t)^PARM(2)110 rf = k1*ACT("H+")+k2*ACT("CO2")+k3*ACT("H2O")120 rem 1e-3 converts mmol to mol130 rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc))140 moles = rate * TIME200 SAVE moles-endUSE SOLUTION 1USE EQUILIBRIUM_PHASES 1KINETICS 1Calcite -m .02 -m0 .02 -parms 125000.0 0.6 -tol 1.e-8-steps 10000 in 100 steps #secondsINCREMENTAL_REACTIONS trueSAVE SOLUTION 2SAVE EQUILIBRIUM_PHASES 2ENDUSE SOLUTION 2USE EQUILIBRIUM_PHASES 2KINETICS 1Calcite -m .02 -m0 .02 -parms 125000.0 0.6 -tol 1.e-8-steps 10000 in 100 steps #secondsINCREMENTAL_REACTIONS trueSAVE SOLUTION 3SAVE EQUILIBRIUM_PHASES 3ENDUSE SOLUTION 3USE EQUILIBRIUM_PHASES 3KINETICS 1Calcite -m .02 -m0 .02 -parms 125000.0 0.6 -tol 1.e-8-steps 10000 in 100 steps #secondsINCREMENTAL_REACTIONS trueSAVE SOLUTION 4SAVE EQUILIBRIUM_PHASES 4ENDUSE SOLUTION 4USE EQUILIBRIUM_PHASES 4KINETICS 1Calcite -m .02 -m0 .02 -parms 125000.0 0.6 -tol 1.e-8-steps 10000 in 100 steps #secondsINCREMENTAL_REACTIONS trueSAVE SOLUTION 5SAVE EQUILIBRIUM_PHASES 5END