DATABASE C:\Program Files (x86)\USGS\Phreeqc Interactive 3.3.7-11094\database\llnl.datSOLUTION_SPECIESCO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -dw 1.92e-9 -Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 1712CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 -Vm 14.58 1.84 4.14 -2.46 -3.20ENDPHASESCO2(g) CO2 = CO2 -log_k -1.468 -delta_h -4.776 kcal -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K -P_c 72.86 # critical P, atm -Omega 0.225 # acentric factorENDSOLUTION 1 temp 300 pH 5.9 pe 4 redox pe units ppm density 1 Ca 405 Cl 6741 K 919 Mg 67 Na 3351 S(6) 288 Si 70 C(4) 366 -water 1 # kgGAS_PHASE 1 -fixed_pressure -pressure 222.67 -volume 1 -temperature 300 CO2(g) 222.67RATESQuartz -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_qtz = SI("Quartz") 30 if (M <= 0 and si_qtz < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_qtz > 0) then SA = 1e-05 #nucleation 60 k_acid = 0 70 k_neut = 10^(-13.40)*EXP(-90.90e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_qtz)) 190 moles = r * TIME 200 SAVE moles -endAnorthite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_anort = SI("Anorthite") 30 if (M <= 0 and si_anort < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_anort > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-3.5)*EXP(-16.60e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(1.411) 70 k_neut = 10^(-9.82)*EXP(-31.50e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_anort)) 190 moles = r * TIME 200 SAVE moles -endAlbite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_alb = SI("Albite") 30 if (M <= 0 and si_alb < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_alb > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-10.16)*EXP(-65.00e+03/8.314*(1.0/TK-1.0/298.15))*(ACT("H+")^(0.457)) 70 k_neut = 10^(-12.56)*EXP(-69.80e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 10^(-15.60)*EXP(-71.00e+03/8.314*(1.0/TK-1.0/298.15))*(ACT("OH-")^(-0.572)) 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_alb)) 190 moles = r * TIME 200 SAVE moles -endK-Feldspar -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_kfeld = SI("K-Feldspar") 30 if (M <= 0 and si_kfeld < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_kfeld > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-10.06)*EXP(-51.70e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.500) 70 k_neut = 10^(-12.41)*EXP(-38.00e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 10^(-21.20)*EXP(-94.10e+03/8.314*(1.0/TK-1.0/298.15))*ACT("OH-")^(-0.823) 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_kfeld)) 190 moles = r * TIME 200 SAVE moles -endDiopside -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_diopsi = SI("Diopside") 30 if (M <= 0 and si_diopsi < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_diopsi > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-6.36)*EXP(-96.10e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.710) 70 k_neut = 10^(-11.11)*EXP(-40.60e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_diopsi)) 190 moles = r * TIME 200 SAVE moles -endEnstatite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_enst = SI("Enstatite") 30 if (M <= 0 and si_enst < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_enst > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-9.02)*EXP(-80.00e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.600) 70 k_neut = 10^(-12.72)*EXP(-80.00e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_enst)) 190 moles = r * TIME 200 SAVE moles -endMagnetite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_magnet = SI("Magnetite") 30 if (M <= 0 and si_magnet < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_magnet > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-8.59)*EXP(-18.60e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.279) 70 k_neut = 10^(-10.78)*EXP(-18.60e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_magnet)) 190 moles = r * TIME 200 SAVE moles -endEpidote -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_epidt = SI("Epidote") 30 if (M <= 0 and si_epidt < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_epidt > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-10.60)*EXP(-71.10e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.338) 70 k_neut = 10^(-11.99)*EXP(-70.70e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 10^(-17.33)*EXP(-79.10e+03/8.314*(1.0/TK-1.0/298.15))*ACT("OH-")^(-0.556) 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_epidt)) 190 moles = r * TIME 200 SAVE moles -endCalcite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_calc = SI("Calcite") 30 if (M <= 0 and si_calc < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_calc > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-0.30)*EXP(-14.40e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(1.000) 70 k_neut = 10^(-5.81)*EXP(-23.50e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_carb = 10^(-3.48)*EXP(-35.40e+03/8.314*(1.0/TK-1.0/298.15))*PR_P("CO2(g)")^(1.000) 90 k_rateconst = k_acid + k_neut + k_carb 100 r = k_rateconst * SA * (1-(10^si_calc)) 190 moles = r * TIME 200 SAVE moles -endIllite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_ill = SI("Illite") 30 if (M <= 0 and si_ill < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_ill > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-10.12)*EXP(-58.00e+03/8.314*(1.0/TK-1.0/373.15))*ACT("H+")^(0.550) 70 k_neut = 10^(-12.26)*EXP(-54.00e+03/8.314*(1.0/TK-1.0/373.15)) 80 k_base = 10^(-10.60)*EXP(-77.00e+03/8.314*(1.0/TK-1.0/373.15))*ACT("OH-")^(-0.350) 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_ill)) 190 moles = r * TIME 200 SAVE moles -endChamosite-7A -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_cham = SI("Chamosite-7A") 30 if (M <= 0 and si_cham < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_cham > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-11.11)*EXP(-88.00e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.500) 70 k_neut = 10^(-12.52)*EXP(-88.00e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_cham)) 190 moles = r * TIME 200 SAVE moles -endDolomite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_dolo = SI("Dolomite") 30 if (M <= 0 and si_dolo < 0) then goto 200 40 SA = PARM(1) * M 50 if (M = 0 and si_dolo > 0) then SA = 1e-05 #nucleation 60 k_acid = 10^(-3.76)*EXP(-56.70e+03/8.314*(1.0/TK-1.0/298.15))*ACT("H+")^(0.500) 70 k_neut = 10^(-8.60)*EXP(-95.30e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_carb = 10^(-5.37)*EXP(-45.70e+03/8.314*(1.0/TK-1.0/298.15))*PR_P("CO2(g)")^(0.500) 90 k_rateconst = k_acid + k_neut + k_carb 100 r = k_rateconst * SA * (1-(10^si_dolo)) 190 moles = r * TIME 200 SAVE moles -endAnhydrite -start 10 REM PARM(1) = MSA (Molar surface area) [m^2/mol] 20 si_anhyd = SI("Anhydrite") 30 if (M <= 0 and si_anhyd < 0) then goto 200 40 SA = PARM(1)*M 50 if (M = 0 and si_anhyd > 0) then SA = 1e-05 #nucleation 60 k_acid = 0 70 k_neut = 10^(-2.79)*EXP(-0.00e+03/8.314*(1.0/TK-1.0/298.15)) 80 k_base = 0 90 k_rateconst = k_acid + k_neut + k_base 100 r = k_rateconst * SA * (1-(10^si_anhyd)) 190 moles = r * TIME 200 SAVE moles -endKINETICS 1Quartz -formula SiO2 1 -m 32.25 -m0 32.25 -parms 48.064 #-tol 1e-12Anorthite -formula CaAl2(SiO4)2 1 -m 21.12 -m0 21.12 -parms 5.548 #-tol 1e-12Albite -formula NaAlSi3O8 1 -m 27.48 -m0 27.48 -parms 5.260 #-tol 1e-12K-Feldspar -formula KAlSi3O8 1 -m 10.53 -m0 10.53 -parms 86.282 #-tol 1e-12Diopside -formula CaMgSi2O6 1 -m 5.66 -m0 5.66 -parms 25.122 #-tol 1e-12Enstatite -formula MgSiO3 1 -m 17.06 -m0 17.06 -parms 933.627 #-tol 1e-12Magnetite -m 2.89 -m0 2.89 -parms 23.616 #-tol 1e-12Epidote -m 0.92 -m0 0.92 -parms 128.267 #-tol 1e-12Calcite -formula CaCO3 1 -m 4.75 -m0 4.75 -parms 15.014 #-tol 1e-12Illite -formula K0.6Mg0.25Al2.3Si3.5O10(OH)2 1 -m 1.22 -m0 1.22 -parms 5956.902 #-tol 1e-12Chamosite-7A -m 7.05 -m0 7.05 -parms 107.920 #-tol 1e-12Dolomite -formula CaMg(CO3)2 1 -m 0 -m0 0 -parms 33.192 #-tol 1e-12Anhydrite -formula CaSO4 1 -m 0 -m0 0 -parms 16.578 #-tol 1e-12-steps 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10 30 100 300 1000 3000 10000 30000 100000 300000 1e6 3e6 1e7 3e7 1e8 3e8 1e9 3e9 1e10 3e10 1e11 3e11 #-steps 315576 3155760 31557600 315576000 3155760000 31557600000 315576000000-cvode true #-cvode_steps 31557600#-cvode_order 5KNOBS-conv 1e-10INCREMENTAL_REACTIONS TrueUSER_GRAPH 1 -headings Time Quartz Anorthite Albite K-Feldspar Diopside Enstatite Magnetite Epidote Calcite Illite Chamosite-7A Dolomite Anhydrite -axis_titles "Log10 Time" "kin" "" -initial_solutions false -connect_simulations true -plot_concentration_vs x -start10 GRAPH_X log10(total_time)20 GRAPH_Y kin("Quartz"), kin("Anorthite"), kin("Albite"), kin("K-Feldspar"), kin("Diopside"), kin("Enstatite"), kin("Magnetite"), kin("Epidote"), kin("Calcite"), kin("Illite"), kin("Chamosite-7A"), kin("Dolomite"), kin("Anhydrite") -end -active trueEND